Ampha P20超便攜全自動花粉(fen)活力分(fen)析儀 基(ji)于(yu)微流控阻抗流式細(xi)胞技術(shu)(IFC),能夠在(zai)微(wei)流(liu)體(ti)精(jing)確參考條件下,實現流(liu)動態花(hua)粉(fen)細胞(bao)的(de)(de)全自動高通量、連(lian)續、無損檢(jian)測和分析(xi),并在(zai)測試結(jie)束時(shi)即時(shi)輸出活(huo)性花(hua)粉(fen)、失活(huo)花(hua)粉(fen)及異常(chang)花(hua)粉(fen)占比,細胞(bao)數量,濃度,大小(xiao)等(deng)信息,是田(tian)間或溫室(shi)進行花(hua)粉(fen)系統篩選(xuan)和常(chang)規檢(jian)測的(de)(de)理想(xiang)工具,為(wei)您的(de)(de)快(kuai)速決(jue)策提供及時(shi)且(qie)可靠的(de)(de)數據支持。
便(bian)攜性 | 易用性 | 全(quan)自動數據(ju)分析 |
小巧便攜 外殼(ke)堅固 內置電池 | 嵌入式觸屏PC 測(ce)量操作(zuo)指引 自動(dong)清(qing)洗維(wei)護 | 無需數據(ju)分(fen)析經驗 即時輸出測量結(jie)果 快速(su)做出決策響應 |
作物專用(yong)芯片 全(quan)自(zi)動解決方案(an): 芯片編程(cheng)了(le)針對特定作物的測(ce)量、沖洗、清洗、算(suan)法和(he)分析等過(guo)程,可實(shi)現全(quan)自動測(ce)量和分析,提高測試、分析的(de)統一性(xing),增加結果的(de)準確性(xing)。 |
番茄專用芯片 | 辣椒專用(yong)芯片 | 玉米專(zhuan)用芯片 | 小麥(mai)專用芯 |
應用方(fang)向
技術(shu)參數
作物專用(yong)芯(xin)片(pian): | 玉米(mi)、小麥、番(fan)茄、辣椒(jiao),選配 |
測(ce)量體積范(fan)圍(wei): | 2000 ~3000μl |
測量(liang)濃度(du)范圍(wei): | 0~1.2×10 5個cells/ ml |
采樣流量范圍: | 800 ~1500μl/ min |
適配樣品管 : | 標準(zhun)5ml流(liu)式細胞(bao)管 |
儀 器 尺 寸: | 340mm×420mm × 205mm(H*W*D) |
儀 器 重 量: | 7.8Kg |
操 作 系(xi) 統: | Linux,內嵌式觸碰PC |
數 據 傳 輸: | Wi-Fi(IEEE 802.11ac/a/b/g/n)、USB |
藍 牙 : | 藍(lan)牙5.0/2.1 + EDR |
端(duan) 口: | 2×2.0USB |
環 境 溫 度: | -20~60°C |
環 境 濕 度: | 10%~90% |
適 用 電 源: | 24V DC ± 10 %,max. 3 A,< 90 W;支持24V可充電電池,24V車載適(shi)配器 |
自動(dong)測量分析: | 上(shang)樣后(hou)全自動(dong)測量、沖洗(xi)、清洗(xi)、并分析(xi),即時輸(shu)出結果(guo) |
疊(die) 加 分 析: | 支持2-6次測(ce)量結果(guo)的(de)手動疊加(jia)分析,適(shi)用于(yu)不同(tong)處理、不同(tong)發育(yu)階(jie)段的(de)對比 |
統 計 分(fen) 析: | 軟(ruan)件支持(chi)多邊形門控數(shu)據(ju)的(de)統計(ji)分(fen)析 |
數(shu) 據 類 型(xing): | 支(zhi)持.CSV、.HTML、.PNG三種格式 |
案(an)例分享
?優質高(gao)抗品(pin)系收集、篩選
高(gao)活(huo)性花粉(fen)是作物優質高(gao)產的前(qian)提,Ampha P20可幫助在育(yu)種或(huo)生(sheng)產過(guo)程中密切(qie)關(guan)注花粉活性,在田(tian)間、溫(wen)室(shi)或(huo)實驗室(shi)快(kuai)速、精(jing)確篩選出適合繁殖發育(yu)、授粉的理想材(cai)料。
?花(hua)粉供應(ying)鏈質量控制
花(hua)粉具有(you)高敏感特性,花(hua)粉活性在生長(chang)、采集、儲存、運(yun)輸、再水合(he)以及授粉的(de)各個環節(jie)極易受溫(wen)度、光(guang)照(zhao)、濕度、散粉等多方面因(yin)素的(de)影響。Ampha Z40可以(yi)提供一個標(biao)準化(hua)的測量方法,快速高(gao)效(xiao)(xiao)且統一的監控花粉的活性狀態,并(bing)優化(hua)花粉保(bao)存和運輸條件,以(yi)確保(bao)授粉效(xiao)(xiao)率。
參(can)考文獻
1. Heidmann I, Schade-Kampmann G, et al (2016). Impedance Flow Cytometry: A Novel Technique in Pollen Analysis. PLoS ONE 11(11): e0165531. doi:10.1371/journal.pone.0165531.
2. Iris Heidmann and Marco Di Berardino(2017). Impedance Flow Cytometry as a Tool to Analyze Micro spore and Pollen Quality. Plant Germline Development: Methods and Protocols, Methods in Molecular Biology,vol. 1669, DOI 10.1007/978-1-4939-7286-9_25.
3. Jiemeng Xu. et al. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol Breeding: 37:58, DOI 10.1007/s11032-017-0664-2.
4. Anowarul I. Bokshi, Daniel K.Y. Tan, Richard M. Trethowan. A robust and rapid pollen viability test using impedance ?ow cytometry for high throughput screening of heat tolerant wheat (Triticum aestivum) germplasm. 2019 Agronomy Australia Conference, 25-29 August 2019.
5. Schaffasz A, Windpassinger S, Snowdon R, et al. Reproductive Cold Stress Tolerance in Sorghum F1 Hybrids is a Heterotic Trait. Agronomy, 2019, 9(9): 508.
6. Mathieu Anatole Tele Ayenan.et al. Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 2019, 9,720
7. Opitz C , Schade G , Kaufmann S , et al. Rapid determination of general cell status, cell viability, and optimal harvest time in eukaryotic cell cultures by impedance flow cytometry[J]. Applied Microbiology and Biotechnology, 2019, 103(20).
8. Canonge J, Philippot M, Leblanc C, et al. Impedance ?ow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures. Plant Science, 2020, 300: 110586.
9. Ostermann, M., Sauter, A., Xue, Y. et al. Label-free impedance ?ow cytometry for nanotoxicity screening. Sci Rep 10, 142 (2020).
10. Daniela Impe, Janka Reitz et al. Assessment of Pollen Viability for Wheat. Frontiers in Plant Science, January 2020, Volume 10, Article 1588
11. John H. Moore et al. Quantifying bacterial spore germination by single-cell impedance cytometryfor assessment of host microbiota susceptibility to Clostridioides difficileinfection. Biosensors and Bioelectronics, Volume 166, 2020, 112440, ISSN0956-5663.
12. Lorenzo Ascari, Valerio Cristofori et al. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. Frontiers in Plant Science, December 2020, Volume 11, Article 615922
13. Angela L. Pattison, Mohammad Nazim Uddin, et al. Use of in-situ field chambers to quantify the influence of heat stress in chickpea (Cicer arientinum). Field Crops Research. Volume 270, 2021, 108215
14. Rafiq, H.; Hartung, J.; Burgel, L.; R?ll, G.; Graeff-H?nninger, S. Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of Cannabis sativa L. Pollen. Plants 2021, 10, 2739
產地:瑞士Amphasys