主要(yao)功能 | |||||
1. 專業分析浮游植物細(xi)(xi)胞,同時具備傳統流式細(xi)(xi)胞儀經(jing)典功能(neng) | |||||
2. 可以掃描記(ji)錄各種光學信號(散射(she)、熒光)的動(dong)態(tai)變化 | |||||
3. 可實(shi)現高(gao)頻(pin)、原位(wei)分析水體微(wei)生物群落及優(you)勢種變化 | |||||
4. 可(ke)在完整的(de)藻類(lei)粒徑譜范圍(wei)內(nei)對生(sheng)物量進(jin)行線性(xing)評估 | |||||
5. 可(ke)直接分析(xi)大(da)尺寸范圍的浮游藻(zao)類(lei)、團體結(jie)構,可(ke)現場(chang)分析(xi)微(wei)囊藻(zao)群(qun)體結(jie)構變(bian)化(hua) | |||||
6. 可(ke)(ke)調(diao)式PMT可(ke)(ke)根據檢測粒徑大小調(diao)節檢測器靈敏度 | |||||
7. 流(liu)動成像技術可對感(gan)興(xing)趣感(gan)興(xing)趣的聚群進行圈門設定后專門拍(pai)照 | |||||
8. 脈(mo)沖信號(hao)指紋圖譜技術(shu),圈門直觀方便,更真實反應細胞(bao)形態(tai) | |||||
9. 水下(xia)測(ce)量(liang)(CytoSub)可在整個真光層分析浮游(you)植物動態 | |||||
10. 可整(zheng)合入浮(fu)標中或其它(ta)載體上進行(xing)在線監測(ce),可配合CTD對水體做剖(pou)面測(ce)量 | |||||
11.實(shi)(shi)現實(shi)(shi)驗(yan)室遠程控制(zhi)基(ji)站式自動(dong)在(zai)線(xian)監(jian)測(ce),可實(shi)(shi)現完(wan)全自動(dong)檢測(ce),無人值守在(zai)線(xian)監(jian)測(ce) | |||||
測量參數(shu) | |||||
光學參(can)數: 前向散射FWS、側向散射SWS,熒光散射FLR、 FLY、 FLO | |||||
形態參數: 能同時獲得包括細胞和顆粒形態物理特性(數量、長度、大小、形態、粒度、色素、峰數等)、群體特征、脈沖圖譜等在內的9個拓撲學指標及最少45組參數 | |||||
絕對計數(shu):自然水體總顆粒計數,圈門后可集群計數及濃度計算,可實現鏈狀藻單細胞數計數功能 | |||||
其他測量參數:分析體積、進樣速率等 | |||||
應(ying)用領域 | |||||
1. 海(hai)洋生態(tai)學與淡水生態(tai)學 | |||||
2. 流域(yu)監測與管(guan)理 | |||||
3. 海洋(yang)學與湖沼學 | |||||
4. 有害(hai)藻華(HABs)預(yu)警 | |||||
5. 微藻生物技術 | |||||
6. 河(he)流、水庫、湖泊(bo)、海洋的監(jian)測與管理 | |||||
7. 監測與管理 | |||||
8. 水(shui)源地、水(shui)廠(chang)、污水(shui)處(chu)理廠(chang)的水(shui)質監(jian)測 | |||||
9. 富營養化研究 | |||||
10. 藻類環境生物學 | |||||
11. 水(shui)產(chan)養(yang)殖 | |||||
選購指南(nan): | |||||
一、便攜式浮游植物流式細胞儀(yi)CytoSense | |||||
系(xi)統組成: | |||||
流式細胞儀分(fen)析主機:相干高質量連續固態激光器,標配波長488nm, 可選波長445nm、635nm、640nm、660nm等,最多可配置7個檢測器(檢測通道含FWS L+R、SWS、YF、RF、OF)。 | |||||
野外便攜式外殼:儀(yi)器采用碳素纖維外殼,防濺(jian)水(shui)設計,更輕便(<15kg),整(zheng)機安(an)裝(zhuang)于(yu)輕質鋁質框,帶高質量(liang)防震墊。包裝(zhuang)于(yu)便攜(xie)式航(hang)空箱內(nei)。 | |||||
數據分析系統:含便攜(xie)式(shi)筆記本電腦,預裝(zhuang)數據(ju)采(cai)集軟件CytoUSB,和數據(ju)分析(xi)軟件CytoClus | |||||
批量處理數(shu)據(ju)分析軟件EasyClus : 需購(gou)買(mai)MatLab軟件配(pei)合使用 | |||||
高速流動(dong)成像模塊:可(ke)選(xuan)。 | |||||
便攜式(shi)浮游植物(wu)流式(shi)細胞儀(yi) | Easyclus 粒徑(jing)分布圖 | Easyclus 散(san)點圖 | |||
系(xi)統組成: | |||||
主(zhu)機:淺(qian)水(shui)版(ban)Cytosub (水(shui)下20米(mi)),含CytoSense所有(you)基本配置 | |||||
浮標模塊:包(bao)括浮標、太陽(yang)能電(dian)池板、充電(dian)電(dian)池、浮標燈、電(dian)子系統、無線傳輸裝置和(he)采樣管防水連接器等。根據用戶需要,也可擴展為易拆卸浮標模塊,這樣用戶可以非常方便(bian)的在CytoSense(室內用)和(he)CytoBuoy(在線監測)間轉換。 | |||||
注意:野外在(zai)線(xian)監測時(shi)不僅(jin)僅(jin)限(xian)于(yu)以浮標作為平(ping)臺,其他平(ping)臺也(ye)可(ke),只要可(ke)以具備放置CytoSense的空(kong)間(jian)及供電即可(ke)。同(tong)時(shi),增加Bacterial staining module,可(ke)實現水(shui)體(ti)異養微生物自動(dong)染色和(he)在(zai)線(xian)分析,可(ke)在(zai)線(xian)檢測藻(zao)類(lei)、細(xi)菌、浮游動(dong)物及沉積物等顆(ke)粒。具體(ti)信(xin)息請來電咨詢。 | |||||
CytoBuoy 浮(fu)體 | |||||
CytoBuoy通訊模式:無線通訊 | |||||
三、水下浮游植物流式細胞儀——CytoSub | |||||
主機(ji):臺式機CytoSense是防(fang)濺水(shui)(shui)(shui)(shui)設計(ji),可(ke)以在野外使用(yong),但(dan)不能水(shui)(shui)(shui)(shui)下(xia)使用(yong)。CytoSense加上(shang)一個水(shui)(shui)(shui)(shui)下(xia)模塊(SUB MODULE)就(jiu)組成了水(shui)(shui)(shui)(shui)下(xia)式流式細胞(bao)儀CytoSub。 | |||||
水下模塊(kuai):一個耐受200 m水深壓力的防水外(wai)殼,閥門和(he)進(jin)樣環路部分(包(bao)括循環泵(beng)),電子控制單元,數(shu)采,水下連(lian)接器和(he)支架。 | |||||
Cytosub 主(zhu)機 | CytoSense 與CytoSub 轉換 | ||||
工作(zuo)模(mo)式一(yi):AUV搭載 | |||||
利用英國國家海洋(yang)中心AutoSub型AUV搭載CytoSub | |||||
工作模(mo)式二(er):水下(xia)垂直剖面分析(xi) | |||||
與CTD結(jie)合一起測量 | |||||
注意:此(ci)外,水下型浮游植(zhi)物流(liu)式細胞儀CytoSub可應(ying)用(yong)于浮標(biao),Ferrybox等監(jian)測平臺,在垂直剖面不同層位獲取浮(fu)游植物生(sheng)物量信息,對(dui)研究(jiu)微囊(nang)藻沉浮(fu)機(ji)制,浮(fu)游動物、水文(wen)、水質等因素對(dui)浮(fu)游植物生(sheng)態位影(ying)響提供數(shu)據依據。 | |||||
CytoSense 檢測對(dui)象 | |||||
產(chan)地:荷(he)蘭 CytoBuoy |
參考文獻 |
數據來(lai)源: Cytometry , Goolge scholar等,截(jie)至2016年,共收集相關文獻近100篇。 |
1. Simon Bonato a, Elsa Breton , al e: Spatio-temporal patterns in phytoplankton assemblages ininshore–offshore gradients using flow cytometry: A case study in the eastern English Channel, Journal of Marine Systems 2016,76-83.[CytoSense] 2. Goran Bakalar & Vinko Tomas, Possibility of Using Flow Cytometry in the Treated Ballast Water Quality Detection, Pomorski zbornik 51 (2016), 43-55 3. Quan Zhou, Wei Chen, al e: A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments, Journal of Environmental Sciences 2012, 24(9) 1709–1716 4. A. Mansour, I. Leblond al.e: Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance. (WSCN 2013) 5. Endymion D. Cooper , Bastian Bentlage al e: Metatranscriptome profiling of a harmful algal bloom.Harmful Algea 37(2014)75-83. 6. SERGIO A. COELHO-SOUZA, FáBIO V. ARAúJO al e: Bacterial and Archaeal Communities Variability Associated with Upwelling and Anthropogenic Pressures in the Protection Area of Arraial do Cabo (Cabo Frio region - RJ). Anais da Academia Brasileira de Ciências (2015) 87(3):1737-1750 7. Malkassian, A., D. Nerini, al. e: Functional analysis and classification of phytoplankton based on data from an automated flow cytometer. Cytometry Part A 2011, 94A:263-275. [Cytosense] 8. Thyssen, M., B. Beker, al. e: Phytoplankton distribution during two contrasted summers in a Mediterranean harbour: combining automated submersible flow cytometry with conventional techniques. Environmental Monitoring and Assessment 2011, 173:1-16. 9. Thyssen, M., Denis M: Temporal and Spatial High-Frequency Monitoring of Phytoplankton by Automated Flow Cytometry and Pulse-Shape Analysis. Springer Netherlands 2011:293-298. 10. Vidoudez, C., J. C. Nejstgaard, al. e: Dynamics of Dissolved and Particulate Polyunsaturated Aldehydes in Mesocosms Inoculated with Different Densities of the Diatom Skeletonema marinoi. Marine Drugs 2011, 9: 345-358. 11. Hansen, B. W., H. H. Jakobsen, al. e: Swimming behavior and prey retention of the polychaete larvae Polydora ciliata. Journal of Experimental Biology 2010:3237-3246. 12. Pereira GC, Figuiredo ARd, Jabor PM, Ebecken1 NFF: Assessing the ecological status of plankton in Anjos Bay: a flowcytometry approach. Biogeosciences Discuss 2010, 7:6243–6264. [cytobuoy] 13. Barofsky, A., Simonelli P, al e: Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J Plankton Res 2009, 32:263-272. [CytoBuoy] 14. Donk V, E., Cerbin S, al e: The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. Freshwater Biology 2009, 54:1843-1855. 15. Pereira, C. G, Granato A, al. e: Virioplankton Abundance in Trophic Gradients of an Upwelling Field. Brazilian Journal of Microbiology 2009, 40:857-865. [CytoBuoy] 16. Thyssen, M., Mathieu D, al. e: Short-term variation of phytoplankton assemblages in Mediterranean coastal waters recorded with an automated submerged flow cytometer. J Plankton Res 2008, 30:1027-1040. [Cytosub] 17. Thyssen, T. M, Garcia N, al. e: Sub meso scale phytoplankton distribution in the north east Atlantic surface waters determined with an automated flow cytometer. Biogeosciences Discuss 2008, 5:2471-2503. [Cytosub] 18. Dubelaar, J. GB, Casotti R, al. e: Phytoplankton and their analysis by flow cytometry. Flow Cytometry with Plant Cells 2007:287-322. [CytoBuoy] 19. Takabayashi, M., Lew K, al e: The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum. J Plankton Res 2006, 28:831-840. [CytoSense] 20. Takabayashi, M., Wilkerson FP, al. e: Response Of Glutamine Synthetase Gene Transcription And Enzyme Activity To External Nitrogen Sources In The Diatom Skeletonema Costatum (Bacillariophyceae). J Phycol 2005, 41:84-94. [Cytobuoy] 21. Dubelaar, J. GB, Geerders PJF: Innovative technologies to monitor plankton dynamics. Sea Technol 2004, 45:15-21. [CytoSub] 22. Dubelaar, J. GB, Geerders PJF, al. e: High frequency monitoring reveals phytoplankton dynamics. J Environ Monit 2004, 6:946-952. [Cytosense] 23 Cunninghama, A., McKeea D, al e: Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. J Mar Syst 2003, 43:51-59. 24. Dubelaar, J. GB, Gerritzen PL: CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar (Barc) 2000, 64:255-265. [CytoBuoy] 25. Dubelaar, J. GB, Jonker RR: Flow cytometry as a tool for the study of phytoplankton. Scientia Marina 2000, 64. [CytoBuoy] 26. Jonker R, Droben R, Tarran G, Medlin L, Wilkins M, Garcla L, zabala L, boddy l: Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project. scientia marina 2000, 64:225-234. [Cyto] 27. Woodd-Walker, S. R, Gallienne CP, al e: A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance. J Plankton Res 2000, 22:473-483. 28. Dubelaar, J. GB, Gerritzen PL, al e: Design and first results of CytoBuoy: A wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry 1999, 37:247-254. [CytoBuoy] 29. Wilkins, F. M, Boddy L, al e: Identification of Phytoplankton from Flow Cytometry Data by Using Radial Basis Function Neural Networks." Appl Environ Microbiol 1999, 65:4404-4410. 30. Jonker, R. R, Meulemans JT, al e: Flow cytometry: A powerful tool in analysis of biomass distributions in phytoplankton. Water SciTechnol 1995, 32:177-182. [Cytosense] 31. Jonker, R. R, G. B. J. Dubelaar, al. e: The European Optical Plankton Analyser: A high dynamic range flow cytometer. Scientia Marina 1994. 32. Dubelaar, G. B. J., A. Groenewegen ea: Optical plankton analyser: a flow cytometer for plankton analysis, II: Specifications. Cytometry 1989, 10:529-539. [OPA] 33. Peeters, J. C. H., G. B. J. Dubelaar, al e: Optical plankton analyser: A flow cytometer for plankton analysis, I: Design considerations. Cytometry 1989, 10:522-528. [OPA] |