主要功能
●對(dui)自(zi)然水(shui)體(ti)中的藍藻、綠(lv)藻、硅/甲藻和(he)隱藻自(zi)動分類(定性)
●自(zi)動測量水樣中藍藻、綠藻、硅/甲藻和隱藻的葉(xie)綠素(su) a 含量(定(ding)量)和總葉(xie)綠素(su) a 含量
●一(yi)杯(bei)自然水樣,同時獲得藍藻(zao)(zao)(zao)(zao)、綠藻(zao)(zao)(zao)(zao)、硅/甲藻(zao)(zao)(zao)(zao)和隱藻(zao)(zao)(zao)(zao)的光合活性:
●光合效率(lv)和光合速率(lv)(相對(dui)電子傳遞速率(lv))
●快速(su)光曲線并進行擬合
●藻類的潛(qian)在最大光合(he)效率
●藻類的光保護能力
●藻類耐受(shou)強光的能力
●用戶可做自己(ji)的參考光譜
測量參數
Fo, Fm, F, Fm', Fv/Fm, Y(II) 即 ΔF/Fm', ETR, a, Ik, Pm, PAR 和葉綠素含量等
應用領域
●主要用于水生(sheng)(sheng)(sheng)生(sheng)(sheng)(sheng)物學、水域生(sheng)(sheng)(sheng)態(tai)學、海洋學、湖沼學、水質預(yu)警(jing)、微藻生(sheng)(sheng)(sheng)理學、微藻抗逆性等領域,對于了解自然水樣中藻類(lei)種群的動態(tai)變(bian)化、水華(hua)預(yu)警(jing)、野外水體(ti)中光合作用的時(shi)空(kong)變(bian)化、校正初級生(sheng)(sheng)(sheng)產力的計算(suan)等有較(jiao)大(da)幫助。
●特(te)別適于浮(fu)游植物(wu)動(dong)力(li)學研究和(he)有害水(shui)華的早期(qi)預警。
主要技術參數
●主控單元:金屬外(wai)殼,包含所有的光電元件及樣品測量室
●測(ce)(ce)量(liang)光(guang)(guang): LED,440 nm,480 nm,540 nm,590 nm 和(he) 625 nm,5 波長脈沖調(diao)制測(ce)(ce)量(liang)光(guang)(guang),2 檔強度設(she)置(zhi),8 檔調(diao)制頻率設(she)置(zhi), 3 檔測(ce)(ce)量(liang)光(guang)(guang)自動高(gao)頻設(she)置(zhi)
●光(guang)化光(guang):板(ban)載多波長(chang) LED 陣列,440 nm,480 nm,540 nm,590 nm,625 nm 和(he) 420-640 nm(白光(guang)),提供持續光(guang)化光(guang),最高(gao)可(ke)達(da) 1400 μmol m-2 s-1,快速動力學(xue)閃光(guang)高(gao)達(da) 7000 μmol m-2 s-1,飽(bao)和(he)脈沖最高(gao)可(ke)達(da) 5000 μmol m-2 s-1
●遠(yuan)紅光:725 nm LED
●信號(hao)檢(jian)測:基于 H-10720 光(guang)電(dian)傳(chuan)感器模塊的光(guang)電(dian)倍增(zeng)檢(jian)測器
●標準檢(jian)測(ce)過濾器:> 650 nm 長通濾光(guang)片
●高(gao)分辨(bian)率(lv)的(de)光電(dian)倍增(zeng)管,葉綠素(su)濃度(du)檢測限低至 0.1μg/L,適用野(ye)外(wai)采集的(de)藻濃度(du)很稀(xi)的(de)樣(yang)品(pin)
升級的技術特點
●可提供(gong) 5 種波長(chang)的脈(mo)沖調制測量光和光化光
●板載 LED 陣(zhen)列芯片技術
●可實時進行四種藻的分類
●可進(jin)行(xing)標準 PAM 測量及(ji)不同波長強光(guang)(guang)化光(guang)(guang)誘導的毫秒(miao)級熒光(guang)(guang)上升動力(li)學分析
●可測定光系統 II 功能性捕(bu)光截(jie)面積
●內置自動測量(liang)程序,易(yi)于(yu)操作
PHYTO-PAM-II vs PHYTO-PAM
便攜式 PHYTO-PAM-II | PHYTO-PAM |
5 種(zhong)不同波長的測(ce)量(liang)光用于(yu)生(sheng)物體內不同類型的天線色素熒光的激發(fa) | 4 種不(bu)同波長的(de)光 |
4 種色素類型(xing)的在線分類 | 3 種色素類型的在線(xian)分類 |
6 種波(bo)長的光化光 | 1 種(zhong)波長的光(guang)化(hua)光(guang) |
可以(yi)分別測量(liang)綠藻(zao)(zao),藍(lan)藻(zao)(zao),硅/甲藻(zao)(zao)以(yi)及(ji)含(han)有(you)(you)藻(zao)(zao)紅(hong)蛋白的有(you)(you)機體(ti),如(ru)隱藻(zao)(zao)不同波長下 PSII 的活性(xing) | 無該功能(neng) |
緊湊型設計 | 需(xu)要組裝(zhuang) |
增加(jia)了(le)快速(su)動力學操作模式,可通過強光(guang)(guang)化光(guang)(guang)脈(mo)沖,測量(liang)不同波(bo)長(chang)的 O- I1 熒光(guang)(guang)上(shang)升動力學曲線 | 無該(gai)功能 |
通過測定(ding)不同光(guang)質和(he)光(guang)合生物色(se)素復合體,獲得光(guang)系(xi)統 II 功能(neng)性捕光(guang)截面積的(de)信息即(ji) σPSII | 無(wu)該功能 |
通過 FluoRed 熒(ying)光標準(zhun)將參考光譜校(xiao)準(zhun)標準(zhun)化 | 無該功能 |
獲得的參考(kao)光譜可在不同設備(bei)及用戶間互換使用 | 參考光譜不能互(hu)換 |
選購指南
一、實驗室測量基本款
系統(tong)組成(cheng):實(shi)驗室版主機,激發檢測單元,懸浮液的光(guang)學單元,球(qiu)形光(guang)量子傳感器(qi),工作臺(tai),軟件(jian)等
注意:新(xin)版 PHYTO-PAM-II 必須配置光量(liang)子傳(chuan)感器,校準光強(qiang)后參考(kao)光譜可(ke)在不同(tong)儀器間通用
實驗室測量基本款 |
二、野外便攜緊湊款
系(xi)統(tong)組(zu)成:緊(jin)湊型(xing)主(zhu)機,球(qiu)形光量子傳感器,軟件等(deng)
注意:新版 PHYTO-PAM-II 必須配置光量子傳感器,校準光強后參考光譜可在不同儀器間通用
便攜式緊湊款 |
五種測量(liang)光通道 | 區分四種藻(zao)類 | 通用型參考光譜(pu) |
測量慢速(su)動力學曲(qu)線 淬滅(mie)分析(xi),暗弛豫(yu)分析(xi) | 測量快速(su)光曲線 光(guang)響應曲線(xian) | 測量快速動力學曲(qu)線 分析PSII功能性捕光(guang)截面 |
三、其他可選附件
1,WATER-S:攪(jiao)拌(ban)器(推薦選配),利用內置(zhi)電池(chi)驅(qu)動的馬達帶動攪(jiao)拌(ban)棒旋轉,對樣品杯里的懸浮液進行(xing)攪(jiao)拌(ban)。需(xu)配置(zhi)攪(jiao)拌(ban)棒 WATER-R。
2,WATER-R:攪拌棒(標配10根(gen))
產地:德國WALZ
參考文獻
數據來(lai)源:光(guang)合作(zuo)用文(wen)(wen)獻 Endnote 數據庫,更新至 2021 年 1 月,文(wen)(wen)獻數量超過 10000 篇
原始數據(ju)來(lai)源:Google Scholar
Gao, K., et al. (2021). "Research Methods of Environmental Physiology in Aquatic Sciences."
Reis, L. L. d., et al. (2021). "Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata." Ecotoxicology and Environmental Safety 208: 111628.
Garg, A., et al. (2020). "A relook into plant wilting: observational evidence based on unsaturated soil–plant-photosynthesis interaction." Scientific Reports 10(1): 22064.
Marazzi, F., et al. (2020). "Interactions between microalgae and bacteria in the treatment of wastewater from milk whey processing." Water 12(1): 297.
Ostrovsky, I., et al. (2020). "Bloom-forming toxic cyanobacterium Microcystis: Quantification and monitoring with a high-frequency echosounder." Water research: 116091.
Qi, J., et al. (2020). "Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium." Separation and Purification Technology: 117808.
Rocha, M. A. M. (2020). "Evaluating the impact of hydrogen peroxide on the phytoplankton community: a bench scale study."
Soto, D. F., et al. (2020). "Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry." Algal Research 45: 101738.
Sui, M., et al. (2020). "Highly efficient nitrate reduction driven by an electrocoagulation system: An electrochemical and molecular mechanism." Bioelectrochemistry 133: 107454.
Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.
Abate, R., et al. (2020). "Enhancing the production of a marine diatom (Skeletonema costatum) with low-frequency ultrasonic irradiation." Journal of Applied Phycology.
Alho, L. d. O. G., et al. (2020). "Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae." Environmental Pollution 265: 114856.
Andrzejczak, O. A., et al. (2020). "The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming. ." Int. J. Mol. Sci(21): 1546.
Bartual, A., et al. (2020). "Types and Distribution of Bioactive Polyunsaturated Aldehydes in a Gradient from Mesotrophic to Oligotrophic Waters in the Alborán Sea (Western Mediterranean)." Marine drugs 18(3): 159.
Bespalova, S. V., et al. (2020). "Fluorimetric Analysis of the Impact of Coal Sludge Pollution on Phytoplankton." Biophysics 65(5): 850-857.
Chen, S., et al. (2020). "Biochemical responses of the freshwater microalga Dictyosphaerium sp. upon exposure to three sulfonamides." Journal of Environmental Sciences 97: 141-148.
Chen, S., et al. (2020). "Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids." Scientific Reports 10(1): 8243.
Chu, F., et al. (2020). "Enhanced lipid accumulation through a regulated metabolic pathway of phosphorus luxury uptake in the microalga Chlorella vulgaris under nitrogen starvation and phosphorus repletion." ACS Sustainable Chemistry & Engineering.
Ferr?o-Filho, A., et al. (2020). "Can small-bodied Daphnia control Raphidiopsis raciborskii in eutrophic tropical lakes? A mesocosm experiment." Environmental Science and Pollution Research.
Gao, X., et al. (2020). "Particulate organic matter as causative factor to eutrophication of subtropical deep freshwater: Role of typhoon (tropical cyclone) in the nutrient cycling." Water research: 116470.
Huang, Y.-R., et al. (2020). "An investigation of mechanisms for the enhanced coagulation removal of Microcystis aeruginosa by low-frequency ultrasound under different ultrasound energy densities." Ultrasonics Sonochemistry 69: 105278.
Lines, T., et al. (2020). "Elevated co2 has differential effects on five species of microalgae from a sub-tropical freshwater lake: possible implications for phytoplankton species composition." n/a(n/a).
Liu, N., et al. (2020). "Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem II oxygen evolution complex of Chlorella vulgaris F1068." Journal of hazardous materials 383: 121063.
Lund-Hansen, L., et al. (2020). "Effects of increased irradiance on biomass, photobiology, nutritional quality, and pigment composition of Arctic sea ice algae." MARINE ECOLOGY PROGRESS SERIES.
Moreira, R. A., et al. (2020). "Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata." Ecotoxicology and Environmental Safety 206: 111180.
Rocha, G. S., et al. (2020). "Shifts in photosynthetic parameters and lipid production of the freshwater microalga Selenastrum gracile (Chlorophyceae) under cadmium exposure." Journal of Applied Phycology.
Schanke, N. L., et al. (2020). "Biogeochemical and ecological variability during the late summer–early autumn transition at an ice-floe drift station in the Central Arctic Ocean." n/a(n/a).
Shang, T., et al. (2020). "Cell density-dependent suppression on the development and photosynthetic activities of Sargassum fusiformis embryos by dinoflagellate Karenia mikimotoi." Harmful Algae 96: 101842.
Shi, Y., et al. (2020). "The effect of plant extracts on growth and photosynthetic fluorescence characteristics of Microcystis flos-aquae." Water Science and Technology.
Wang, X., et al. (2020). "Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa." Environmental Science and Pollution Research.
Wu, S., et al. (2020). "A rise in ROS and EPS production: new insights into the Trichodesmium erythraeum response to ocean acidification." n/a(n/a).
Xiao, M., et al. (2020). "Intra-population strain variation in phosphorus storage strategies of the freshwater cyanobacterium Raphidiopsis raciborskii." FEMS microbiology ecology.
Xiao, Y., et al. (2020). "The Role of Cyanobacterial External Layers in Mass Transfer: Evidence from Temperature Shock Experiments by Noninvasive Microtest Technology." Microorganisms( 8): 861.
Yang, Z., et al. (2020). "Temperature triggers the annual cycle of Microcystis, comparable results from the laboratory and a large shallow lake." Chemosphere 260: 127543.
Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.
Zhang, Y., et al. (2020). "Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles." Frontiers of Environmental Science & Engineering 14(6): 103.
Zheng, X., et al. (2020). "Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa." Environmental Science and Pollution Research.