AgriPheno提供(gong)農(nong)作物(wu)重要(yao)性狀(zhuang)功能基因定位服務(wu)(wu),結合(he)芯片和高(gao)通量測(ce)(ce)序開(kai)發(fa)材(cai)料間(jian)的SNP位點(dian),并(bing)結合(he)高(gao)通量表型測(ce)(ce)試,提供(gong)基因型-表型-育種的整套實驗流程設計(ji)與服務(wu)(wu)。
超高通量基因(yin)分型-分(fen)子標記檢(jian)測平(ping)臺-Nexar
Nexar系統是快速、自動化的內聯儀器,包括Nexar?模塊化內聯液處理與分析系統、Soellex?高通量PCR水浴熱循環系統和Araya?內聯熒光檢測系統,可支持樣本和陣列的高通量處理。Nexar利用創新的ArrayTapeTM(陣列卷帶)系列耗材,能夠在高精確度和準確性下運行。同時配備KASP Array Tape Master mix進行競爭性等位基因特異性PCR,可在廣泛的基因組DNA樣品中,對SNPs和特定位點上的InDels進行精準的雙等位基因分型。
Nexar系統(tong)模塊化內聯(lian)平臺與Array Tape的設(she)計實現了(le)基于(yu)微孔(kong)板技術的多功(gong)能性,并且(qie)幾乎(hu)消除(chu)了(le)手動操(cao)作和(he)復雜的儀器操(cao)作。這(zhe)種靈活的微孔(kong)板替代品可促(cu)進整個(ge)(ge)(ge)實驗室(shi)的內聯(lian)和(he)整合自動化,并有助于(yu)終點(dian)PCR,qPCR和(he)終點(dian)等溫(wen)DNA擴(kuo)增的應用(yong)。每(mei)個(ge)(ge)(ge)96孔(kong),384孔(kong)和(he)768孔(kong)陣列(lie)都標有獨特的條形碼(ma)標簽,確保(bao)在處理過程中和(he)加工后(hou)準確識別(bie)各個(ge)(ge)(ge)樣品。此外(wai),還可提(ti)供定制化的陣列(lie),包括RNAse,DNAse和(he)無熱原選項。
Nexar 系統
Nexar? |
Soellex? | Araya? |
? Nexar?
Nexar作為超高(gao)通量解決方案,是一套用于Array Tape(陣列卷帶)樣(yang)品和試劑處(chu)理的內聯液體處(chu)理系統。該(gai)儀(yi)器提供分裝、密封(feng)和源板存儲,以及(ji)可選進(jin)程,如孵育和脫水(shui)。這一靈活的模塊配置可以處(chu)理各(ge)種應(ying)用進(jin)程。
? Soellex?
Soellex為三室水(shui)浴(yu)熱(re)循環系統(tong),能夠在一輪(lun)運行中同(tong)時(shi)熱(re)循環多達(da)三個Array Tape(陣列(lie)卷帶)線軸(230,400個反應孔(kong))或(huo)152個微孔(kong)板(384孔(kong))。
? Araya?
Araya是內聯熒光檢測系(xi)統,專為Array Tape(陣列卷帶)的自動掃描而設(she)計(ji)。該系(xi)統可作為獨(du)立儀器或(huo)Nexar的內聯模(mo)塊使用。
? Intellics?
創新的配套軟件(jian)提供集(ji)中(zhong)數(shu)據(ju)管理、儀器監控、智能運(yun)行(xing)優化、Protocol生成和簡化數(shu)據(ju)分(fen)析。
應用領(ling)域(yu)
? 糧食作物:水(shui)稻、小麥、玉米、土豆(dou)等(deng)
? 模式(shi)植(zhi)物:擬(ni)南芥、煙(yan)草、二穗短柄草等
? 蔬(shu)菜(cai)(cai)作(zuo)物:生(sheng)菜(cai)(cai)、番茄(qie)、甜菜(cai)(cai)、黃瓜、甘(gan)藍(lan)、菠菜(cai)(cai)等
? 模(mo)式動物:人、小白鼠、斑馬魚(yu)等
? 常(chang)見牲畜:牛、豬、山(shan)羊等
應用(yong)案(an)例
圖1 典型的基因分型富集圖
注(zhu):每個數據點代表一個獨立的DNA樣(yang)本的熒光信號,相(xiang)同基因(yin)型的樣(yang)本會發出相(xiang)似水平的熒光,因(yin)此富集在一起。
服務項目
? 目標基因/性(xing)狀標記(ji)開(kai)發 ? 全基因(yin)組標記(ji)開發 ? 遺傳圖(tu)譜(pu)的構建 ? 圖位克隆 ? 背景篩(shai)查 ? 蔬菜等純度(du)檢測 ? 植物身(shen)份鑒定/分群 |
服務特點
? 適(shi)用于超(chao)高通量自動化(hua)檢(jian)測(ce),液體處理、孵育與檢(jian)測(ce)等流程一體化(hua)
? 反應(ying)體系微型化,顯著降低單個數據(ju)點的成本
? 兼容粗提(ti)的DNA樣本,并可靈活選用化學試劑
? 專業化生物信息平臺及團隊
? 大規模數(shu)據(ju)存儲及(ji)數(shu)據(ju)處理服(fu)務(wu)器
客戶(hu)提(ti)供
? 基(ji)因或(huo)指定區(qu)間信息
? 符合要求的(de)(de)供體/受體材料的(de)(de)DNA、葉片或(huo)種(zhong)子等植物組(zu)織(zhi)
服務周期
? 根據特(te)定序列中變異(yi)位點設計標(biao)記:10-25個工作日
? 根據(ju)特定(ding)供體與(yu)特定(ding)回(hui)交親本開(kai)發:10-20個工作日
? 基因初步定位:30~40個工(gong)作日
? 基因精細定位:30~40個工作日
? 已克隆基因序列開發: 15-30個工(gong)作日
? 全基因組標記開(kai)發:4-6個月(yue)
? 未(wei)克隆已定位基因標記開發:根據(ju)性(xing)狀復雜(za)程度確定
視頻鏈接:
參考文(wen)獻:
2017
Lennon J R , Matthew K , Major G , et al. Identification of Teosinte Alleles for Resistance to Southern Leaf Blight in Near Isogenic Maize Lines[J]. Crop Science, 2017, 57(4):1973-.
Zhang J , Wen Z , Li W , et al. Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J]. Molecular Breeding, 2017, 37(5):60.
King Z R , Childs S P , Harris D K , et al. A new soybean rust resistance allele from PI 423972 at theRpp4locus[J]. Molecular Breeding, 2017, 37(5):62.
2016
Patil G , Do T , Vuong T D , et al. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean[J]. Scientific Reports, 2016, 6(19199).
Dilip C , Sudakshina P , Mathew P , et al. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity? Roundup Ready 2 Yield? Soybean in Seed Samples[J]. BioMed Research International, 2016, 2016:1-12.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
Jamann T M , Luo X , Morales L , et al. A remorin gene is implicated in quantitative disease resistance in maize[J]. Theoretical & Applied Genetics, 2016, 129(3):591-602.
King, Z. R., D. K. Harris, E. D. Wood, J. W. Buck, H. R. Boerma, and Z. Li. 2016. Registration of Four Near-Isogenic Soybean Lines of G00-3213 for Resistance to Asian Soybean Rust. J. Plant. Reg. 10:189-194. doi:10.3198/jpr2015.04.0027crg
Jiafa C , Cristian Z , Noemi O , et al. The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines[J]. PLOS ONE, 2016, 11(6):e0157236-.
Yao N , Lee C R , Semagn K , et al. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance[J]. Plos One, 2016, 11(8):e0160749.
Zimmermann J , Musyoki M K , Cadisch G , et al. Biocontrol agent Fusarium oxysporum f.sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres[J]. Fungal Ecology, 2016, 23:1-10.
2015
Azevedo G C , Cheavegattigianotto A , Bárbara F Negri, et al. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P[J]. BMC Plant Biology, 2015, 15.
Nair S K , Babu R , Magorokosho C , et al. Fine mapping ofMsv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines[J]. Theoretical and Applied Genetics, 2015, 128(9):1839-1854.
Horn F , Habeku? A , Stich B . Linkage mapping of Barley yellow dwarf virus resistance in connected populations of maize[J]. BMC Plant Biology, 2015, 15(1):29.
Chandrasena, D., Y. Wang, C. Bales, J. Yuan, C. Gu, and D. Wang. 2015. Pyramiding rag3, rag1b, rag4, and rag1c Aphid-Resistant Genes in Soybean Germplasm. Crop Sci. 55:2108-2115. doi:10.2135/cropsci2015.02.0089
Chen, Z.Y., Warburton, M.L., Hawkins, L.K., Wei, Q., Brown, R.L., Bhatnagar, D., Raruang, Y. 2016. Production of the 14 kDa trypsin inhibitor protein is important for maize resistance against Aspergillus flavus infection/aflatoxin. World Mycotoxin Journal. 9(2):215-228.
Hwang S , King C A , Ray J D , et al. Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations[J]. Theoretical and Applied Genetics, 2015, 128(10):2047-2065.
Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions[J]. Euphytica, 2015, 204(3):635-647.
Kappel K , Schr?Der U . Substitution of high-priced fish with low-priced species: Adulteration of common sole in German restaurants[J]. Food Control, 2016, 59:478-486.
Haring E , Voyta L L , Barbara D?ubl, et al. Comparison of genetic and morphological characters in fossil teeth of grey voles from the Russian Far East (Rodentia: Cricetidae: Alexandromys)[J]. Mammalian Biology, 2015, 80(6):496-504.
Lennon J R , Matthew K , Major G , et al. Identification of Alleles Conferring Resistance to Gray Leaf Spot in Maize Derived from its Wild Progenitor Species Teosinte[J]. Crop Science, 2016, 56(1):209-.
Pili N N , Fran?A S C , Kyndt T , et al. Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya[J]. Plant and Soil, 2016, 405(1-2):371-380.
Tandzi L.N. and Ngonkeu E.L., 2015, Molecular Characterization of Selected Maize (Zea mays L.) Inbred Lines, Maize Genomics and Genetics, Vol.6, No.2, 1-5 (doi: 10.5376/mgg.2015.06.0002)
Li L , Hill-Skinner S , Liu S , et al. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase (FPGS)[J]. Plant Journal, 2015, 81(3):493-504.
2014
Tang H M , Liu S , Hillskinner S , et al. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation.[J]. Plant Journal, 2014, 77(3):380-392.
Rosas J E , Bonnecarrère, Victoria, Pérez de Vida, Fernando. One-step, codominant detection of imidazolinone resistance mutations in weedy rice (Oryza sativa L.)[J]. Electronic Journal of Biotechnology, 2014, 17(2):95-101.
Jamann T M , Poland J A , Kolkman J M , et al. Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize[J]. Genetics, 2014, 198(1):333-344.
Beyene Y , Semagn K , Mugo S . Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers[J]. Molecular Breeding, 2014, 34(3):1423-1435.
Sandhu N , Torres R O , Cruz M T S , et al. Traits and QTLs for development of dry direct-seeded rainfed rice varieties[J]. Journal of Experimental Botany, 2014.
Semagn K , Beyene Y , Babu R , et al. Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Sub-Saharan Africa[J]. Crop Science, 2015, 55(4):1449.
Luo W , Guo T , Yang Q , et al. Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice ( Oryza sativa) by using four HRM-based markers and a linked gel-based marker[J]. Molecular Breeding, 2014, 34(3):805-815.
King Z , Serrano J , Roger Boerma H , et al. Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping[J]. Biotechnology Letters, 2014, 36(9):1875-1879.
Dao A , Sanou J , Mitchell S E , et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines[J]. BMC Genetics, 2014, 15(1):127.
Zheng P , Babar A , Parthasarathy S , et al. A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil[J]. Theoretical and Applied Genetics, 2014, 127(7):1537-1547.
Mideros S X , Warburton M L , Jamann T M , et al. Quantitative Trait Loci Influencing Mycotoxin Contamination of Maize: Analysis by Linkage Mapping, Characterization of Near-Isogenic Lines, and Meta-Analysis[J]. Crop Science, 2014, 54(1):127.
Flávia F. Mendes, Lauro J. M. Guimar?es, Jo?o Candido Souza, et al. Genetic Architecture of Phosphorus Use Efficiency in Tropical Maize Cultivated in a Low-P Soil[J]. Crop Science, 2014, 54(4):1530.
Suwarno W B , Pixley K V , Palacios-Rojas N , et al. Formation of Heterotic Groups and Understanding Genetic Effects in a Provitamin A Biofortified Maize Breeding Program[J]. Crop Science, 2014, 54(1):14.
Ruddle P , Whetten R , Cardinal A , et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition.[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(2):349-58.
Cardinal A J , Whetten R , Wang S , et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Tag.theoretical & Applied Genetics.theoretische Und Angewandte Genetik, 2014, 127(1):97-111.
2013
Imai I , Kimball J A , Conway B , et al. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice[J]. Molecular Breeding, 2013, 32(1):101-120.
Haegeman A , Bauters L , Kyndt T , et al. Identification of candidate effector genes in the transcriptome of the rice root knot nematode\r, Meloidogyne graminicola[J]. Molecular Plant Pathology, 2013, 14(4):379-390.
Atalah B A , Fouquaert E , Damme E J M V . Promoter Analysis for Three Types of EUL-Related Rice Lectins in Transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2013, 31(6).
Lamkey C M , Helms T C , Goos R J . Marker-assisted versus phenotypic selection for iron-deficiency chlorosis in soybean[J]. Euphytica, 2013, 194(1):67-78.
Almeida G D , Makumbi D , Magorokosho C , et al. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance[J]. Theoretical & Applied Genetics, 2013, 126(3):583-600.
2012
Ruddle II, P. and Whetten, R. and Cardinal, A. and et al, . (2012) Effect of a novel mutation in a D9-stearoyl-ACP-desaturase on soybean seed oil composition. TAG Theoretical and Applied Genetics. pp. 1-9.
Chen W , Vanopdorp N , Fitzl D , et al. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for abrown midrib1mutation in maize[J]. Plant Molecular Biology, 2012, 80(3):289-297.
Semagn K , Magorokosho C , Vivek B S , et al. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers[J]. BMC Genomics, 2012, 13.
Semagn K , Beyene Y , Makumbi D , et al. Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines[J]. Theoretical and Applied Genetics, 2012, 125(7):1487-1501.
Bernardi J , Lanubile A , Li Q B , et al. Impaired Auxin Biosynthesis in the defective endosperm18 Mutant Is Due to Mutational Loss of Expression in the ZmYuc1 Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize[J]. PLANT PHYSIOLOGY, 2012, 160(3):1318-1328.
Prigge V , Xu X , Li L , et al. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize[J]. Genetics, 2012, 190(2):781.
Mammadov J , Chen W , Mingus J , et al. Development of versatile gene-based SNP assays in maize (Zea maysL.)[J]. Molecular Breeding, 2012, 29(3):779-790.
Li S , Smith J R , Ray J D , et al. Identification of a new soybean rust resistance gene in PI 567102B[J]. Theoretical and Applied Genetics, 2012, 125(1):133-142.