Plantarray植(zhi)物(wu)高通量生理學(xue)特(te)征(zheng)監測(ce)系統
一套高通量、以植物生理學為基礎的高精度表型系統,可以完成整個植物生長周期中不同環境下的SPAC因子的測量。
以色列Plant-DiTech公(gong)司(si)的(de)(de)Plantarray監(jian)測(ce)系統是一套高通量(liang),以植(zhi)(zhi)物生理學(xue)為基礎的(de)(de)高精(jing)度表型(xing)系統,可以完成整個植(zhi)(zhi)物生長(chang)周期中(zhong)不同環境(jing)下的(de)(de)SPAC(Soil-Plant-Atmosphere Continuum, 土(tu)壤植(zhi)(zhi)物大氣連(lian)(lian)續(xu)體)因子的(de)(de)測(ce)量(liang)。連(lian)(lian)續(xu)不間斷的(de)(de)獲(huo)取(qu)陣列內所有(you)植(zhi)(zhi)物的(de)(de)監(jian)測(ce)數據,實時監(jian)控和及時調整每個培養容(rong)器中(zhong)的(de)(de)土(tu)壤條件,包含土(tu)壤水分、鹽分。
Israeli Center of Research Excellence facility in Rehovot
>>Plantarray監測系統的主要優點<<
? 生理學特征的監測和數據高通量分析,如生長速率、蒸騰速率、水分利用率、氣孔導度等特征;
? 連續控制不同的土壤和水分環境(如干旱、鹽分或化學物質);
? 理想的實驗平臺:
? 全(quan)自(zi)動 | ? 均一檢測 |
? 適用于不同類型植物 | ? 精確測量 |
? 非破壞性 | ? 實現(xian)隨機分組實驗設計 |
? 3-4周的實驗相當于4-6個月的人工工作;
? 操作簡單,維護費用幾可忽略;
? 靈活的設計能夠滿足任何溫室中不同方面的科學研究需求。
? 實時統計分析-為了數據的可靠快速分析,提供多階乘ANOVA或配對T檢驗;
? 實驗目的-在實驗運行中為了確保處理的效果可以獲取最優化的實驗參數;
? 快速定量選擇-提供植物對于不同環境需求生理反應的評級和評分的簡況;
? 復雜實驗通過簡要圖像呈現生理參數與環境條件的空間和時間關系,顯示趨勢、異常和比率。
>>Plantarray監測(ce)系統(tong)應用領域(yu)<<
? 非生物逆境脅迫研究,比如:干旱、淹水、營養、有毒物質等脅迫研究;
? 在農作物、蔬菜、樹木、藥用植物、燃料作物等方面的育種研究;
? 根系的土壤穿透力、水通量研究;
? 生物激素與養分研究;
? 生理生態學研究等。
>>Plantarray監(jian)測系(xi)統測量參數(shu)<<
? 直接測量特性:
? 重量 | ? 空氣濕度 |
? 空氣溫度 | ? 氣壓 |
? 輻射(PAR) | ? 土壤水分 |
? 土壤電導率 | ? 土壤溫度 |
? 日蒸騰 |
? 計算特性:
? 植(zhi)物(wu)生(sheng)物(wu)量增益 | ? 日蒸騰(teng) |
? 水分利用效率 | ? 氣孔導度 |
? 抗(kang)脅迫因子 | ? 水分相對含量 |
? 根穿透力 | ? 根系水通量 |
? VPD |
>>參考文獻<<
Negin et. al., (2016) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Functional Plant Biology DOI: 10.1071/FP16156.
Faber et. Al., (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany DOI: 10.1093/jxb/erw398.
Halperin et. Al., (2016) High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 10.1111/tpj.13425.
Xu et. al., (2015) Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891.
Lugassi et. al., (2015) Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.
Moshelion and Altman, (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology. 33, 337-342.
Moshelion et. al., (2014) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell & Environment DOI: 10.1111/pce.12410.
Bedada et. al., (2014) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics DOI: 10.11861471-2164-15-995.
Tracy Lawson et. al., (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behavior. New Phytologist DOI: 10.1111nph.12945.
Kelly et. al., (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS One. 9 : DOI:10.1371/ journal.pone.0087888.
Kelly et. al., (2013) Hexokinase mediates stomatal closure. The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258.
Nir et. al., (2013) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant cell and Environment 37, 113–123.
Sade et. Al., (2012) Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signaling & Behavior DOI org/10.4161/psb.20505.
Sade et. al., (2010) The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress. Plant Physiology 152:1-10.
Wallach et. al., (2010) Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress. Journal of Experimental Botany 61:3439–3449.
Sade et. al., (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SLTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist. 181: 651–661.