国产成人免费AV片在线观看_日本按摩高潮a级中文在线_男女高潮又爽又黄又无遮挡_久久久午夜精品福利内容

以色列Plant-Ditech:Plantarray植物高通量生理學特征監測系統
日期:2018-01-25 15:59:30

Plantarray植(zhi)物(wu)高通量生理學(xue)特(te)征(zheng)監測(ce)系統

一套高通量、以植物生理學為基礎的高精度表型系統,可以完成整個植物生長周期中不同環境下的SPAC因子的測量。

900.jpg

以色列Plant-DiTech公(gong)司(si)的(de)(de)Plantarray監(jian)測(ce)系統是一套高通量(liang),以植(zhi)(zhi)物生理學(xue)為基礎的(de)(de)高精(jing)度表型(xing)系統,可以完成整個植(zhi)(zhi)物生長(chang)周期中(zhong)不同環境(jing)下的(de)(de)SPAC(Soil-Plant-Atmosphere Continuum, 土(tu)壤植(zhi)(zhi)物大氣連(lian)(lian)續(xu)體)因子的(de)(de)測(ce)量(liang)。連(lian)(lian)續(xu)不間斷的(de)(de)獲(huo)取(qu)陣列內所有(you)植(zhi)(zhi)物的(de)(de)監(jian)測(ce)數據,實時監(jian)控和及時調整每個培養容(rong)器中(zhong)的(de)(de)土(tu)壤條件,包含土(tu)壤水分、鹽分。


1.jpg

2.jpg

Israeli Center of Research Excellence facility in Rehovot


>>Plantarray監測系統的主要優點<<


生理學特征的監測和數據高通量分析,如生長速率、蒸騰速率、水分利用率、氣孔導度等特征;

連續控制不同的土壤和水分環境(如干旱、鹽分或化學物質);

理想的實驗平臺:

? 全(quan)自(zi)動? 均一檢測
適用于不同類型植物精確測量
? 非破壞性? 實現(xian)隨機分組實驗設計

3-4周的實驗相當于4-6個月的人工工作;

操作簡單,維護費用幾可忽略;

靈活的設計能夠滿足任何溫室中不同方面的科學研究需求。

實時統計分析-為了數據的可靠快速分析,提供多階乘ANOVA或配對T檢驗;

實驗目的-在實驗運行中為了確保處理的效果可以獲取最優化的實驗參數;

快速定量選擇-提供植物對于不同環境需求生理反應的評級和評分的簡況;

復雜實驗通過簡要圖像呈現生理參數與環境條件的空間和時間關系,顯示趨勢、異常和比率。


>>Plantarray監測(ce)系統(tong)應用領域(yu)<<


非生物逆境脅迫研究,比如:干旱、淹水、營養、有毒物質等脅迫研究;

在農作物、蔬菜、樹木、藥用植物、燃料作物等方面的育種研究;

根系的土壤穿透力、水通量研究;

生物激素與養分研究;

生理生態學研究等。


>>Plantarray監(jian)測系(xi)統測量參數(shu)<<


直接測量特性:

重量空氣濕度
空氣溫度氣壓
輻射(PAR)土壤水分
土壤電導率土壤溫度
日蒸騰

計算特性:

? 植(zhi)物(wu)生(sheng)物(wu)量增益? 日蒸騰(teng)
水分利用效率氣孔導度
? 抗(kang)脅迫因子? 水分相對含量
根穿透力根系水通量
? VPD


>>參考文獻<<

Negin et. al., (2016) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Functional Plant Biology DOI: 10.1071/FP16156.

Faber et. Al., (2016) Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany DOI: 10.1093/jxb/erw398.

Halperin et. Al., (2016) High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 10.1111/tpj.13425.

Xu et. al., (2015) Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Frontiers in plant sciences DOI: 10.3389/fpls.2015.00891.

Lugassi et. al., (2015) Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.

Moshelion and Altman, (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology. 33, 337-342.

Moshelion et. al., (2014) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell & Environment DOI: 10.1111/pce.12410.

Bedada et. al., (2014) Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics DOI: 10.11861471-2164-15-995.

Tracy Lawson et. al., (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behavior. New Phytologist DOI: 10.1111nph.12945.

Kelly et. al., (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS One. 9 : DOI:10.1371/ journal.pone.0087888.

Kelly et. al., (2013) Hexokinase mediates stomatal closure. The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258.

Nir et. al., (2013) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant cell and Environment 37, 113–123.

Sade et. Al., (2012) Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signaling & Behavior DOI org/10.4161/psb.20505.

Sade et. al., (2010) The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress. Plant Physiology 152:1-10.

Wallach et. al., (2010) Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress. Journal of Experimental Botany 61:3439–3449.

Sade et. al., (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SLTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist. 181: 651–661.

收 藏