国产成人免费AV片在线观看_日本按摩高潮a级中文在线_男女高潮又爽又黄又无遮挡_久久久午夜精品福利内容

2018澤泉植物表型技術Workshop通知(上海,3月16日)
日期:2018-03-12 17:14:37

上海澤(ze)泉(quan)科(ke)技(ji)(ji)股份有限(xian)公(gong)司(si)(si)多年(nian)來秉承(cheng)推(tui)進中國生態環(huan)境改善、農業興國的(de)理念,服務涉(she)及(ji)植(zhi)物(wu)表(biao)(biao)型(xing)育種,植(zhi)物(wu)生理生態,水文(wen)水利,農業工(gong)程(cheng)等領域的(de)科(ke)研(yan)和(he)(he)技(ji)(ji)術(shu)(shu)支持。為更好(hao)地服務全國科(ke)研(yan)用戶,促(cu)進植(zhi)物(wu)表(biao)(biao)型(xing)育種、表(biao)(biao)型(xing)技(ji)(ji)術(shu)(shu)推(tui)廣,同時促(cu)進相關研(yan)究設(she)施和(he)(he)平(ping)(ping)臺的(de)建設(she),上海澤(ze)泉(quan)科(ke)技(ji)(ji)股份有限(xian)公(gong)司(si)(si)將于2018年(nian)3月16日下午(wu)在上海孫(sun)橋現代(dai)農業園(yuan)區AgriPheno高(gao)通量植(zhi)物(wu)表(biao)(biao)型(xing)平(ping)(ping)臺舉辦“2018澤(ze)泉(quan)植(zhi)物(wu)表(biao)(biao)型(xing)技(ji)(ji)術(shu)(shu)Workshop”。Workshop內容包(bao)括植(zhi)物(wu)表(biao)(biao)型(xing)研(yan)究技(ji)(ji)術(shu)(shu)研(yan)究進展(zhan)交流、AgriPheno高(gao)通量植(zhi)物(wu)表(biao)(biao)型(xing)平(ping)(ping)臺及(ji)科(ke)研(yan)項目(mu)介(jie)紹(shao)以(yi)及(ji)平(ping)(ping)臺參觀考察。


現向各(ge)單位(wei)植物研(yan)究、農(nong)業建設領(ling)域科研(yan)人員(yuan)發出誠摯邀請,歡(huan)迎(ying)您(nin)出席本次workshop與參會者交流領(ling)域內的科研(yan)進(jin)展,期待(dai)您(nin)的光臨。


一、主辦單位:上海澤泉科技(ji)股份(fen)有限公司


二、會議時間與地點

時(shi)間:2018年3月16日下午

地點(dian):上(shang)海乾菲諾農業科技有限公(gong)司(AgriPheno高通量植物(wu)表型平(ping)臺),上(shang)海市浦東新區沔北路185號孫(sun)橋(qiao)現代農業園C9-1


三、會議日程

時間

報告內容及主講人

13:00-14:00

Plant Phenomics and   Image Analysis (植物表型(xing)組(zu)學(xue)與圖(tu)像分析(xi))

主講:Ji Zhou, 周濟(ji),英(ying)國(guo)BBSRC Earlham Institute,University of East Anglia & 南京農(nong)業大(da)學(xue)表(biao)型(xing)交叉(cha)研究中心

14:05-14:45

Remote Sensing and IoT   for Phenomics(遙感和(he)物聯(lian)網技(ji)術在表型研究中的應用)

主(zhu)講:Daniel Reynolds(周濟實(shi)驗室, 英國(guo)BBSRC Earlham Institute)

14:50-15:30

Machine Learning for   Plant Phenomics (機器(qi)學習在(zai)植物表(biao)型中的應(ying)用(yong))

主講:Aaron Bostrom (周濟實驗(yan)室, 英國BBSRC   Earlham Institute)

15:40-16:20

Introduction of AgriPheno   Plant Phenotyping Facility and Research Project (AgriPheno植物表型平臺介(jie)紹及科研項目進展)

主(zhu)講(jiang):Hong Zhang, 張(zhang)弘, 上(shang)海(hai)澤泉(quan)科技股份有(you)限(xian)公司

16:25-17:00

Engineering   Cost-effective Intelligent Phenotyping Complete Set   Instrumentation/facilities for precise crop breeding (大(da)宗作物表型篩選精準育(yu)種成套裝備、儀器與系統)

主講(jiang):Liang Gong,貢亮,上(shang)海(hai)交通大(da)學


四、參會須知

1、參會回執:請參會人員于3月14日前將參會回執通過電子郵件發送至郵箱:vivi.,或傳真。我們將根據參(can)會回執協助推薦住宿和安排參(can)會事宜。掃描/點擊二維碼(ma),填(tian)寫信息(xi)亦可參(can)會。

2、Workshop費(fei)用:參會免費(fei)。交(jiao)通(tong)、食宿自理。


五、會務組聯系方式

聯系人:徐靜萍,郵箱:vivi.,電話:  分機(ji):8043

地址:上海市普(pu)陀區金(jin)沙江路1038號華大科技園2號樓8層  郵編:200062

六、附件

附件1:2018澤(ze)泉(quan)植物表型技術Workshop 參會(hui)回(hui)執

附件2:會場交通

附件3:報告摘要

 

上(shang)海澤泉科技股份有限公司

2018年(nian)3月12日

PhenoCenter18.gif

附件1:2018澤泉植物表型技術Workshop 回執

工作單位


通信地址


郵編


傳真


電話


姓名

性別

職稱/職務

手機

E-mail

備注接送地鐵站

















































請于3月14日前將參會回執通過電子郵件發送至郵箱:vivi.,或傳真發送至。


附件2:會場交通

1.jpg
2.jpg

上海乾菲諾(nuo)農業科技有限(xian)公司(si)

地址(zhi):上海(hai)市(shi)浦東新區沔北路185號(hao)孫橋(qiao)現代(dai)農(nong)業(ye)園C9-1

交通:地鐵16號(hao)線羅山路站(zhan),2號(hao)線廣蘭(lan)路站(zhan)下車(che),我司安排車(che)輛接送。具(ju)體(ti)信息可在百度地圖中搜索“上海(hai)乾(qian)菲諾農業科技有限(xian)公司”。


附件3:報告摘要

Plant Phenomics and Image Analysis (植物表型組學與圖像分析)

主講Ji Zhou, 周濟,英(ying)國(guo)BBSRC Earlham Institute,University of East Anglia, & 南京(jing)農業大學(xue)表型交(jiao)叉研究中(zhong)心

With the maturation of high-throughput and low-cost genotyping platforms, the current bottleneck in breeding, cultivation and crop research lies in phenotyping and phenotypic analyses. Recent phenotyping technologies invented by industry and academia are capable of producing large image- and sensor-based data. However, how to effectively transform big data into biological knowledge is an immense challenge that urgently requires a cross-disciplinary effort. In the talk, I will introduce our research-based phenotyping platforms at Norwich Research Park, ranging from the sky to cells, including AirSurf (automated aerial analytic software), Phenospex (an in-field 3D laser scanning platform), CropQuant (a low-cost distributed crop monitoring system), SeedGerm (a machine-learning based seed germination device), Leaf-GP (an open-source software for quantifying growth phenotypes), and high content screening systems for cellular phenotype measurements. Through these examples, I will introduce our multi-scale phenomics solutions developed for different biological questions on bread wheat, brassica, and other plant species, including linking phenotypic analyses to the assessment of genes controlling performance-related traits, QTL analysis of yield potential, gene discovery using near isogenic lines (NILs), quantifying genotype-by-environment interactions (GxE) to assess environmental adaptation, etc. I will also talk about how to utilise open scientific and numeric libraries for data calibration, annotation, image analysis and phenotypic analyses.


● Remote Sensing and IoT for Phenomics(遙感和物聯網技術在表型研究中的應用)

主講Daniel Reynolds(周濟實驗室(shi), 英國BBSRC Earlham Institute)

A high-level overview of remote sensing, Internet of Things (IoT) and how they are applied to Plant Phenomics. Latest remote sensing and IoT provide high-resolution and high-frequency environmental measurements when compared to traditional manual methods. Distributed sensor networks such as the CropQuant platform allow researchers to record the environment of in-field or indoor experiments without manual intervention, which allow the capture of dynamic environmental changes throughout key growing stages. The lecture will introduce the techniques and applications of IoT and remote sensing in plant phenomics, covering (1) what is IoT with respect to sensing networks, (2) the hardware available and suitable for IoT including digital and analogue sensors, (3) single-board computers and microcontrollers, (4) control software and interfacing with IoT devices, (5) data transmission and retrieval, and finally (6) the management of multiple devices and collation of remote data. The lecture will not cover technical details and mainly focus on the introduction of how remote sensing and IoT could be used for phenomics.

 

● Machine Learning for Plant Phenomics (機器學習在植物表型中的應用)

主講 Aaron Bostrom (周濟實驗室, 英國BBSRC Earlham Institute)

An introduction to machine learning and how to apply it in plant phenomics. Machine learning is a tool that has been gaining attention due to many advances in the last decade. This talk aims to provide a summary of machine learning techniques, simple and intuitive explanations and demonstrations about how machine learning has been applied to different real-world problems. In particular, generalisation and how to design training datasets and experimentation with machine learning in mind will be explained. The lecture will finish with some of Aaron’s current and previous work, and where machine learning have been applied to real world problems such as our AirSurf on lettuces yield prediction as well as SeedGerm software on seed germination measurements together with industrial leaders such as G’s Growers and Syngenta.

 

● Engineering Cost-effective Intelligent Phenotyping Complete Set Instrumentation/facilities for precise crop breeding (大宗作物表型篩選精準育種成套裝備、儀器與系統)

主講Liang Gong,貢亮,上(shang)海交通大學(xue)

It plays an important role for high-throughput phenotyping in cutting-edge crop breeding field, and this automation generates heterogeneous measuring data for subsequent meta-analyses, modeling, and ground-truth dataset building. Traditional researches focus on an individual instrument or data processing algorithms. We advocate that the crop breeeding issue has to be addressed with a systematic paradigm, ranging from building cost-effective infrastructure to leveraging crowd-sourcing applications, and to process standardization.The roadmap for conducting phenotyping-based breeding is depicted as, first, plant organ-specific phenotyping parameter index sets for crop breeding are optimally determined, and corresponding phenotyping instrumentation are introduced. Second, an entity-relationship data aggregation model is built to organize and present the phenotyping big data; Third, a paradigm of creating a phenotyping database is proposed to facilitate crop breeding. Finally, a formal GPEM database for constructing a crop breeding phenotyping database is established, which highlights the plant morphometric data retrieval and data mining. This data aggregation scheme provides an effective tool and exemplary template for dealing with big plant phenotyping data acquired by different devices and equipment under user-defined resolution. The case study for creating a GPEM phenotyping database is step-by-step investigated to show the feasibility and effectiveness of plant phenotyping big-data aggregation.

收 藏