国产成人免费AV片在线观看_日本按摩高潮a级中文在线_男女高潮又爽又黄又无遮挡_久久久午夜精品福利内容

逆境模擬及植物生長監測系統PlantArray
日期:2017-11-15 13:25:59

逆境模擬及(ji)植(zhi)物生長監(jian)測系統 PlantArray

                                               

image.png


逆境模擬及植物生長監測系統是一套高(gao)(gao)通量(liang),以植物(wu)(wu)生理學為基礎的(de)高(gao)(gao)精度表型系統(tong),可以完成整個植物(wu)(wu)生長周(zhou)期中不同環境(jing)下的(de)SPAC因(yin)子的(de)測量(liang)。連續不間斷的(de)獲取陣列(lie)內所有植物(wu)(wu)的(de)監(jian)測數據,實(shi)時監(jian)控和及時調(diao)整每個培養(yang)容器中的(de)土壤(rang)條件,包含土壤(rang)水(shui)分(fen)、鹽分(fen)。

image.png

Israeli Center of Research Excellence facility in Rehovot


       逆境模擬及(ji)植(zhi)物生(sheng)長監測系統(tong)的主(zhu)要優點(dian):


生理學(xue)特(te)征的監(jian)測和數(shu)據高通量分(fen)析,如生長速率(lv)、蒸騰速率(lv)、水分(fen)利(li)用率(lv)、氣孔導度等特(te)征;

連續控制不同的土壤和水分環境(如(ru)干(gan)旱、鹽分或化學物質);

理(li)想的實驗平臺:

全自動;

均一檢測;

適用于不同類型(xing)植物;

精確測量;

非(fei)破壞性;

實(shi)現隨機分組實(shi)驗設計;

3-4周(zhou)的(de)實驗相當于4-6個(ge)月(yue)的(de)人工工作;

操作(zuo)簡(jian)單,維護費用幾可(ke)忽略;

靈活的(de)設計能夠滿(man)足任何溫室中不同方(fang)面(mian)的(de)科學研究需求。

實時統(tong)計(ji)分析(xi)-為了(le)數據的可靠(kao)快速分析(xi),提供多階(jie)乘ANOVA或配對T檢(jian)驗(yan);

實(shi)驗目的-在實(shi)驗運(yun)行(xing)中(zhong)為了確保處理(li)的效果(guo)可以獲取優化的實(shi)驗參數;

快(kuai)速定量選(xuan)擇-提供植物(wu)對于不同環境需求生理反應(ying)的評級和(he)評分的簡況;

復雜實驗通過簡(jian)要圖像呈現生理參數與環(huan)境條件(jian)的空間和時(shi)間關系,顯示趨勢、異常和比率。


image.png


       逆境模擬及植物(wu)生長監測(ce)系統的應用領域(yu):


非生物逆(ni)境(jing)脅迫研(yan)究(jiu)(jiu),比如:干(gan)旱、淹水、營(ying)養、有毒物質等脅迫研(yan)究(jiu)(jiu);

在農作物、蔬菜、樹木、藥用(yong)植物、燃料作物等方面(mian)的育種研究;

根系(xi)的土壤(rang)穿(chuan)透力、水(shui)通量(liang)研究;

生物激(ji)素(su)與養分研究;

生理生態學研究等。


      測(ce)量參數:

直(zhi)接測量參(can)數(shu):



重量

空氣濕度

空(kong)氣(qi)溫度

輻射(PAR)

氣(qi)壓

土(tu)壤水分(fen)

土壤電導率

土壤溫度(du)

日蒸騰

 


計算參數:



植物生物量增益(yi)

日蒸騰

水分利用效率

氣孔導度

抗脅迫因子(zi)

水分相對(dui)含量

根穿透(tou)力

根系水通(tong)量

VPD



      逆境模擬及(ji)植物生長監測系統的(de)技術參(can)數:


l  PIU單元含有3個數字通道(dao)、1個模擬通道(dao)、1個稱重式蒸滲儀通道(dao),所有的傳感器可以同時連續工作;

l  德(de)國高(gao)精度稱重(zhong)模塊,最大測(ce)重(zhong)量(liang)(liang)50kg(測(ce)量(liang)(liang)范圍根(gen)據(ju)具體(ti)配置而定),測(ce)量(liang)(liang)精確(que)度±0.02%稱重(zhong)量(liang)(liang);

l  植(zhi)(zhi)物(wu)(wu)生長容(rong)器滿足(zu)多種植(zhi)(zhi)物(wu)(wu)的生長需求,容(rong)積1.5-60L,具有防漏水、濺水設計;

l  可以(yi)根據植物生(sheng)長時間或生(sheng)長容器重量選擇灌(guan)(guan)溉模式,灌(guan)(guan)溉系統采用(yong)以(yi)色列(lie)精(jing)準的滴灌(guan)(guan)系統控制,能夠精(jing)確的控制澆水(shui)、施(shi)肥或施(shi)加生(sheng)物激素的量;

l  土(tu)壤類、氣象類傳感(gan)器選擇美國高精度(du)傳感(gan)器測量土(tu)壤含水量、溫度(du)、電(dian)導(dao)率,空氣溫濕度(du)、PAR、氣壓等(deng)參數(shu);

 

      應用案(an)例


生物刺激劑在充(chong)分灌(guan)溉和干旱條件下對甜椒的定量研究


image.png

                                                                                                                                                              

 

image.png


 

image.png



代(dai)表(biao)文獻(xian):


1. Alemu, M. D. et. al., (2024) Dynamic physiological response of tef to contrasting water availabilities Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1406173,

2. Paul, M. et. al., (2024), Precision phenotyping of a barley diversity set reveals distinct drought response strategies Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1393991,

3. Jiang. R. et. al., (2024) Leveraging "golden-hour" WUE for developing superior vegetable varieties with optimal water-saving and growth traits Vegetable Research. DOI: 10.48130/vegres-0024-0001

4. Dewi, E.S. et al. (2023) Agronomic and Physiological Traits Response of Three Tropical Sorghum (Sorghum bicolor L.) Cultivars to Drought and Salinity Agronomy, 13(11), p. 2788. DOI: 10.3390/agronomy13112788.

5. Kahit Itzhak, et. al., (2023) Sounds emitted by plants under stress are airborne and informative Cell. DOI: 10.1016/j.cell.2023.03.009

6. Yaara, A. et. al., (2023) Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. Plant Physiology. DOI: 10.1093/kiad372

7. Fang, P. et. al., (2023) Understanding water conservation vs. profligation traits in vegetable legumes through a physio-transcriptomic-functional approach Horticulture Research, DOI: 10.1093/hr/uhac287

8. Negin, B. et. al., (2022) Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering New Phytologist DOI: 10.1111/nph.18615

9. Markovich, O et. al., (2022) Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant Plant Soil DOI: 10.1007/s11104-022-05298-4

10. Mishra R. et. al., (2021) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants Molecular Plant Pathology DOI: 10.1111/mpp.13172

11. Shahar Weksler et. al., (2021) Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics system Jornal of Experimental Botany DOI: 10.1093/jxb/erab561

12. Xinyi Wu. et al. Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and     GWAS in Cowpea. Frontiers in Genetics, 743758(2021)

13. AK Pandey. et al. Functional physiological phenotyping with functional mapping: a general framework to bridge the phenotype-genotype gap in plant physiology. iScience, 102846(2021).

14. Yanwei Li. et al. High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants. Horticultural  Plant Journal (2020)

15. Weksler, S. et al. A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance. Remote Sensing 12, 1493 (2020).

16. Illouz-Eliaz, N. et al. Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. Journal of Experimental Botany (2020).

17. Dalal, A. et al. A High Throughput Gravimetric Phenotyping Platform for Real Time Physiological Screening of Plant Environment Dynamic Responses. bioRxiv (2020).

18 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Science 281, 31-40, doi://doi.org/10.1016/j.plantsci.2018.12.027 (2019).

19 . Illouz-Eliaz, N. et al. Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments. The Plant Cell 31, 1506, doi:10.1105/tpc.19.00235 (2019).

20 . Gosa, S. C., Lupo, Y. & Moshelion, M. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Plant Science 282, 49-59, doi://doi.org/10.1016/j.plantsci.2018.05.008 (2019).

21 . Dalal, A. et al. Dynamic Physiological Phenotyping of Drought-stressed Pepper Plants Treated with'Productivity-Enhancing’and'Survivability-Enhancing’Biostimulants. Frontiers in Plant Science 10, 905 (2019).

22 . Dalal, A. et al. A High-Throughput Physiological Functional Phenotyping System for Time-and Cost-Effective Screening of Potential Biostimulants. bioRxiv, 525592 (2019).

23 . Galkin, E. et al. Risk‐management strategies and transpiration rates of wild barley in uncertain environments. Physiologia plantarum (2018).

24 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response. bioRxiv, 218719 (2017).

25 . Nir, I. et al. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, tpc. 00542.02017 (2017).




以(yi)色(se)列    Plant-Ditech

收 藏