国产成人免费AV片在线观看_日本按摩高潮a级中文在线_男女高潮又爽又黄又无遮挡_久久久午夜精品福利内容
葉綠素熒光成像系統(tǒng)——M-IMAGING-PAM
日期:2025-04-08 11:57:45

功能強大、操作最簡便、發(fā)表文獻超多的葉綠素熒光成像系統(tǒng)

突變株快速篩選的強大工具


MAXI版本.jpgMINI.pngMICROSCOPY版本.jpg

MAXI版本,成像面積11×15   cm)

藍光版,450 nm,測葉片和真核藻類

紅光版,620 nm,測藍藻和真核藻類

可測量96孔板,平板,384點藻斑

MINI版本,成像面積2.4×3.2 cm

藍光版,460 nm,測量葉片和真核藻類

紅光版,620 nm,測量葉片和藍藻

GFP版,480 nm,測量綠色熒光蛋白

MICROSCOPY版本

藍光版:470 nm

紅光版:625nm

RGB版:RGB光源

M-IMAGING-PAM是一套主機可分別接多個成像單元的葉綠素熒光成像系統(tǒng),如MAXI成像單元,MINI成像單元以及搭載顯微鏡的MICROSCOPY成像單元。不同的成像單元適用于不同的應用場景,MAXI成像單元主要在實驗室內(nèi)使用,MINI成像單元可以帶到野外現(xiàn)場使用,MICROSCOPY成像單元可以用于組織或藻類單細胞測量。

每個成像單元有藍光和紅光兩個類型的光源區(qū)分,它們的區(qū)別在于藍光版主要用于高等植物和真核藻類的測量,而紅光版可以用于藍藻或藍藻共生的生物結皮,地衣測量。除此之外,MINI成像單元還有一個單獨的GFP版本,可以用于檢測遺傳標簽表達的GFP熒光蛋白。MICROSCOPY成像單元的RGB光源可以用于藻類種群信號解卷積,進行單細胞藻類分類。

M-IMAGING-PAM充分考慮了葉綠素熒光成像系統(tǒng)設計的基本原則:測量光強度足夠低的情況下最大限度的保證了有效成像面積內(nèi)的光場均勻性(最大差異小于2-7%)。廣場均勻的基礎上,M-IMAGING-PAM還充分考慮了絕大部分研究的需求,光化光和飽和脈沖強度均可滿足所有物種測量的基本要求。

M-IMAGING-PAM葉綠素熒光成像系統(tǒng)于2003年問世。時至今日,累計發(fā)表文獻4000多篇,光合作用文獻數(shù)據(jù)庫收錄2283篇,是發(fā)表文獻最多的PAM型號。近五年,每年都有超過200篇文獻發(fā)表。發(fā)文質(zhì)量高,其中不乏Nature,Molecular Plant,Nature Plants,Nature Communications,The Plant Cell,PNAS,New Phytologist,Plant Physiology,The Plant Journal等植物學領域的專業(yè)高分雜志文章(詳見附錄)。

M-IMAGING-PAM是葉綠素熒光成像系統(tǒng)的典范,不是所有的葉綠素熒光成像系統(tǒng)都叫M-IMAGING-PAM。


主要功能

 

成像參數(shù)

Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, Abs, NIR, Red, Inh等。

 

應用領域

  

擴展功能

IMAGIING-PAM與GFS-3000聯(lián)用

IMAGIING-PAM與GFS-3000.jpg

模式一:MAXI-探頭與GFS-3000聯(lián)用,在10 cm x 13 cm的面積上同步測量氣體交換與熒光成像。


模式二:MINI-探頭與GFS-3000聯(lián)用,在2 cm x 3.2 cm的面積上同步測量氣體交換與熒光成像。


模式三:MINI-探頭與GFS-3000和擬南芥葉室聯(lián)用,實現(xiàn)擬南芥整株的同步測量(氣體交換與熒光成像)。


聯(lián)用1.jpg聯(lián)用2.jpg



Phenoplate:MAXI-IMAGIING-PAM與熱循環(huán)儀聯(lián)用

Phenoplate方法集成了Maxi-Imaging-PAM和熱循環(huán)儀,可在葉綠素a熒光測量之前、期間和之后對溫度進行快速動態(tài)控制。它可以在動態(tài)控制的熱環(huán)境中同時評估多達384個樣品的光系統(tǒng)II效率(Y(II))和非光化學淬滅(NPQ)。在本文中,我們展示了如何利用這一簡單的系統(tǒng)來詳細描述光合作用&光強&溫度之間在電子轉(zhuǎn)移率(ETR)和非光化學淬滅(NPQ)方面的關系。

熱循環(huán)儀聯(lián)用.jpg熱循環(huán)儀聯(lián)用2.jpg

 

應用案例

突變株的快速篩選

MAXI-IMAGING-PAM特別適合對幼苗、愈傷組織、微藻等進行突變株的快速篩選,適合于與光合突變株、抗逆(抗旱、抗鹽、抗病等)突變株、產(chǎn)油/氫突變株等的快速篩選。

突變株的快速篩選1.jpg突變株的快速篩選2.jpg
                            突變株篩選案例:國內(nèi)某客戶使用384藻斑點篩選的衣藻突變株(左:Fo成像;右:Fv/Fm成像)


環(huán)境對光合生物的影響

高溫,干旱,鹽分等環(huán)境條件會對光合生物產(chǎn)生非生物脅迫,影響光合作用正常進行。Fv/Fm作為光系統(tǒng)II最大光化學轉(zhuǎn)化效率常被用來指示脅迫對光合生物影響的程度,具有非常廣泛的應用。

環(huán)境對光合生物.jpg

環(huán)境對光合生物的影響案例:全球變暖對珊瑚共生蟲黃藻光合能力的影響。

 

光合生物對環(huán)境的自我適應與調(diào)節(jié)

自然界中的植物通常都能很好地應對環(huán)境變化帶來的傷害,因為它們已經(jīng)進化出了敏銳的應對機制。非光化學淬滅可以將過剩的激發(fā)能耗散為熱量在其中起到了非常重要的作用。NPQ作為表征非光化學淬滅的熒光參數(shù),在研究光下和暗弛豫階段的能量分配中被廣泛使用,具有非常重要的意義。

自我適應與調(diào)節(jié)1.jpg自我適應與調(diào)節(jié)2.jpg

                                      光合生物對環(huán)境的自我適應與調(diào)節(jié)案例:擬南芥短鏈脫氫酶-還原酶突變體光保護能力研究

 

產(chǎn)地:德國WALZ

 

高分文獻目錄

數(shù)據(jù)來源:光合作用文獻Endnote數(shù)據(jù)庫

原始數(shù)據(jù)來源:Google Scholar

 

1.      Aviv-Sharon, E., et al. (2025). "The thylakoid lumen Deg1 protease affects non-photochemical quenching via the levels of violaxanthin de-epoxidase and PsbS." The Plant Journal 121(4): e17263.

2.      Bai, X., et al. (2025). "OsSPL9 promotes Cu uptake and translocation in rice grown in high-Fe red soil." New Phytologist n/a(n/a).

3.      Brodersen, C. R., et al. (2025). "In situ cavitation bubble manometry reveals a lack of light-activated guard cell turgor modulation in bryophytes." Proceedings of the National Academy of Sciences 122(13): e2419887122.

4.      Carriquí, M., et al. (2025). "A loss of stomata exposes a critical vulnerability to variable atmospheric humidity in ferns." Current Biology.

5.      Chen, X., et al. (2025). "Plant resistance inducer AMHA enhances antioxidant capacities to promote cold tolerance by regulating the upgrade of glutathione S-transferase in tea plant." Horticulture research.

6.      Huang, S., et al. (2025). "Glycoside-specific metabolomics reveals the novel mechanism of glycinebetaine-induced cold tolerance by regulating apigenin glycosylation in tea plants." New Phytologist n/a(n/a).

7.      Jin, J., et al. (2025). "Squalene acts as a feedback signaling molecule in facilitating bidirectional communication between tea plants." Science Advances 11(7): eads4888.

8.      Lenzen, B., et al. (2025). "The chloroplast RNA-binding protein CP29A supports rbcL expression during cold acclimation." Proceedings of the National Academy of Sciences 122(5): e2403969122.

9.      Li, Q., et al. (2025). "The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress." The Plant Journal 121(5): e70060.

10.    Li, Z., et al. (2025). "Exploring the phytotoxicity mechanisms of PET nanoplastics and 6:2 FTSA in water hyacinth under individual and combined exposure scenarios." Journal of hazardous materials 489: 137675.

11.    Qu, J., et al. (2025). "WRKY27-SPDS1 module of Ichang papeda (Citrus ichangensis) promotes cold tolerance by modulating spermidine content." Horticulture research.

12.    Wu, J., et al. (2025). "Solid-like condensation of MORF8 inhibits RNA editing under heat stress in Arabidopsis." Nature communications 16(1): 2789.

13.    Yuan, Y., et al. (2025). "Phototropin connects blue light perception to starch metabolism in green algae." Nature communications 16(1): 2545.

14.    Zhang, H., et al. (2025). "Integrated analyses of metabolome, leaf anatomy, epigenome, and transcriptome under different light intensities reveal dynamic regulation of histone modifications on the high light adaptation in Camellia sinensis." The Plant Journal 121(5): e70040.

15.    Zhao, R., et al. (2025). "Trophic-transferred hierarchical fragmentation of microplastics inducing distinct bio-adaptations via a microalgae-mussel-crab food chain." Journal of hazardous materials 489: 137620.

16.    Zhu, J., et al. (2025). "The ABF4-bHLH28-COMT5 module regulates melatonin synthesis and root development for drought tolerance in citrus." The Plant Journal 121(6): e70078.

17.    Bohn, L., et al. (2024). "The temperature sensor TWA1 is required for thermotolerance in Arabidopsis." Nature.

18.    Ding, M., et al. (2024). "Probing plant signal processing optogenetically by two channelrhodopsins." Nature.

19.    Hall-Spencer, J. M., et al. (2008). "Volcanic carbon dioxide vents show ecosystem effects of ocean acidification." Nature 454: 96-99.

20.    Wu, S., et al. (2024). "The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato." Molecular Plant.

21.    Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.

22.    Bonfig, K. B., et al. (2010). "Post-Translational Derepression of Invertase Activity in Source Leaves via Down-Regulation of Invertase Inhibitor Expression Is Part of the Plant Defense Response " Molecular Plant 3(6): 1037-1048.

23.    Gawro ski, P., et al. (2014). "Mitogen-Activated Protein Kinase 4 Is a Salicylic Acid-Independent Regulator of Growth But Not of Photosynthesis in Arabidopsis." Molecular Plant 7(7): 1151-1166.

24.    Jiao, B.-B., et al. (2011). "A Novel Protein RLS1 with NB–ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice." Molecular Plant: in press.

25.    Kerchev, P. I., et al. (2014). "Mitochondrial Perturbation Negatively Affects Auxin Signaling." Molecular Plant 7(7): 1138-1150.

26.    Ojeda, V., et al. (2018). "2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark." Molecular Plant.

27.    Sewelam, N., et al. (2014). "Spatial H2O2 Signaling Specificity: H2O2 from Chloroplasts and Peroxisomes Modulates the Plant Transcriptome Differentially." Molecular Plant 7(7): 1191-1210.

28.    Thormahlen, I., et al. (2016). "Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light." Molecular Plant.

29.    Lin, Y.-C. and Y.-F. Tsay (2023). "Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance." Nature Plants.

30.    Cano-Ramirez, D. L., et al. (2023). "Low-temperature and circadian signals are integrated by the sigma factor SIG5." Nature Plants.

31.    Dadras, A., et al. (2023). "Environmental gradients reveal stress hubs pre-dating plant terrestrialization." Nature Plants 9(9): 1419-1438.

32.    Amstutz, C. L., et al. (2020). "An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis." Nature Plants 6(2): 154-166.

33.    Garcia-Molina, A. and D. Leister (2020). "Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis." Nature Plants.

34.    Li, Z., et al. (2016). "Evolution of an atypical de-epoxidase for photoprotection in the green lineage." Nature Plants 2: 16140.

35.    Bellin, L., et al. (2021). "Mechanisms of feedback inhibition and sequential firing of active sites in plant aspartate transcarbamoylase." Nature communications 12(1): 947.

36.    Buck, J. M., et al. (2019). "Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum." Nature communications 10(1): 1-12.

37.    Grimmer, J., et al. (2020). "Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts." Nature communications 11(1): 1662.

38.    Guo, M., et al. (2024). "Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution." Nature communications 15(1): 6667.

39.    Jang, S., et al. (2024). "Oxygenating respiratoid biosystem for therapeutic cell transplantation." Nature communications 15(1): 9151.

40.    Leister, D., et al. (2023). "An ancient metabolite damage-repair system sustains photosynthesis in plants." Nature communications 14(1): 3023.

41.    Levy, N., et al. (2024). "Ecosystem transplant from a healthy reef boosts coral health at a degraded reef." Nature communications 15(1): 10033.

42.    Lu, Y., et al. (2021). "Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection." Nature communications 12(1): 679.

43.    Pang, X., et al. (2023). "Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration." Nature communications 14(1): 4207.

44.    Ros-Moner, E., et al. (2024). "Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha." Nature communications 15(1): 8326.

45.    Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5 in the absence of PGRL1." Nature communications 12(1): 3941.

46.    Sandoval-Ibá?ez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.

47.    Si, L., et al. (2024). "Structural basis for the distinct core-antenna assembly of cryptophyte photosystem II." Nature communications 15(1): 6812.

48.    Uflewski, M., et al. (2024). "The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status." Nature communications 15(1): 2792.

49.    von Bismarck, T., et al. (2023). "Growth in fluctuating light buffers plants against photorespiratory perturbations." Nature communications 14(1): 7052.

50.    Yang, S., et al. (2023). "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions." Nature communications 14(1): 4477.

51.    Zhang, H., et al. (2024). "A rapid aureochrome opto-switch enables diatom acclimation to dynamic light." Nature communications 15(1): 5578.

52.    Zhang, L., et al. (2024). "Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly." Nature communications 15(1): 3122.

53.    Zhang, M., et al. (2022). "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants." Nature communications 13(1): 7441.

54.    An, G., et al. (2022). "LsNRL4 enhances photosynthesis and decreases leaf angles in lettuce." Plant biotechnology journal.

55.    Fontanet-Manzaneque, J. B., et al. (2024). "Untargeted mutagenesis of brassinosteroid receptor SbBRI1 confers drought tolerance by altering phenylpropanoid metabolism in Sorghum bicolor." Plant biotechnology journal n/a(n/a).

56.    Lin, D., et al. (2022). "SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato." Plant biotechnology journal.

57.    Wang, M., et al. (2018). "ERF 109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process." Plant biotechnology journal.

58.    Wei, T., et al. (2018). "Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata." Plant biotechnology journal.

59.    Zhang, Y., et al. (2021). "ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene." Plant biotechnology journal n/a(n/a).

60.    Zhang, Y., et al. (2023). "GmPLP1 negatively regulates soybean resistance to high light stress by modulating photosynthetic capacity and reactive oxygen species accumulation in a blue light-dependent manner." Plant biotechnology journal n/a(n/a).

61.    Anderson, S. A., et al. (2021). "A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis." The Plant Cell 33(8): 2812-2833.

62.    Ann DeTar, R., et al. (2021). "Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression." The Plant Cell.

63.    Armbruster, U., et al. (2010). "The Arabidopsis Thylakoid Protein PAM68 Is Required for Efficient D1 Biogenesis and Photosystem II Assembly." The Plant Cell 22(10): 3439-3460.

64.    Che, L.-P., et al. (2024). "RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis." The Plant Cell.

65.    Choi, B. Y., et al. (2021). "The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism." The Plant Cell.

66.    Dangoor, I., et al. (2012). "A chloroplast light-regulated oxidative sensor for moderate light in`tensity in Arabidopsis." The Plant Cell: in press.

67.    Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.

68.    Henninger, M., et al. (2021). "The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment." The Plant Cell.

69.    Jin, H., et al. (2014). "HYPERSENSITIVE TO HIGH LIGHT1 Interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and Functions in Protection of Photosystem II from Photodamage in Arabidopsis." The Plant Cell 26(3): 1213-1229.

70.    Kunz, H.-H., et al. (2009). "The ABC Transporter PXA1 and Peroxisomal -Oxidation Are Vital for Metabolism in Mature Leaves of Arabidopsis during Extended Darkness " The Plant Cell 21: 2733-2749.

71.    Lee, C. P., et al. (2021). "The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate–citrate exchange." The Plant Cell.

72.    Legen, J., et al. (2024). "A prion-like domain is required for phase separation and chloroplast RNA processing during cold acclimation in Arabidopsis." The Plant Cell.

73.    Lu, Y., et al. (2011). "A Small Zinc Finger Thylakoid Protein Plays a Role in Maintenance of Photosystem II in Arabidopsis thaliana." The Plant Cell 23(5): 1861-1875.

74.    Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.

75.    Orth, T., et al. (2007). "The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis." The Plant Cell 19: 333-350.

76.    Petroutsos, D., et al. (2011). "The Chloroplast Calcium Sensor CAS Is Required for Photoacclimation in Chlamydomonas reinhardtii." The Plant Cell 23(8): 2950-2963.

77.    Prabhakar, V., et al. (2010). "Phosphoenolpyruvate Provision to Plastids Is Essential for Gametophyte and Sporophyte Development in Arabidopsis thaliana." The Plant Cell 22(8): 2594-2617.

78.    Reiter, B., et al. (2022). "CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis." The Plant Cell.

79.    Rolo, D., et al. (2024). "CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1) is a photosystem I assembly factor in Arabidopsis." The Plant Cell.

80.    Rossel, J. B., et al. (2007). "Systemic and Intracellular Responses to Photooxidative Stress in Arabidopsis." The Plant Cell 19: 4091-4110.

81.    Rosso, D., et al. (2009). "Photosynthetic Redox Imbalance Governs Leaf Sectoring in the Arabidopsis thaliana Variegation Mutants immutans, spotty, var1, and var2." The Plant Cell 21: 3473-3492.

82.    Ruiz-Solaní, N., et al. (2023). "Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence." The Plant Cell.

83.    Schneider, A., et al. (2016). "The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis." The Plant Cell.

84.    Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.

85.    Tognetti, V. B., et al. (2010). "Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis Architecture and Water Stress Tolerance." The Plant Cell 22(8): 2660-2679.

86.    Wang, J., et al. (2024). "Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants." The Plant Cell.

87.    Wu, X., et al. (2024). "A viral small interfering RNA-host plant mRNA pathway modulates virus-induced drought tolerance by enhancing autophagy." The Plant Cell.

88.    Xiao, W., et al. (2024). "The transcription factor TGA2 orchestrates salicylic acid signal to regulate cold-induced proline accumulation in Citrus." The Plant Cell.

89.    Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.

90.    Zhang, Z., et al. (2024). "The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes." The Plant Cell.

91.    Zhou, H., et al. (2021). "PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants." The Plant Cell.

92.    Acebron, K., et al. (2020). "Diurnal dynamics of non-photochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field." New Phytologist n/a(n/a).

93.    Barja, M. V., et al. (2021). "Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato." New Phytologist 231(1): 255-272.

94.    Belbin, F. E., et al. (2016). "Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor." New Phytologist: n/a-n/a.

95.    Borisjuk, L., et al. (2005). "Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds." New Phytologist 163: 761-776.

96.    Brodersen, K. E. and M. Kühl (2023). "Photosynthetic capacity in seagrass seeds and early-stage seedlings of Zostera marina." New Phytologist n/a(n/a).

97.    Chi, C., et al. (2024). "Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato." New Phytologist n/a(n/a).

98.    Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).

99.    Duncan, R. J., et al. (2021). "Ocean acidification alters the nutritional value of Antarctic diatoms." New Phytologist n/a(n/a).

100.  Frank, J., et al. (2018). "Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis." New Phytologist 0(0).

101.  Goessling, J. W., et al. (2018). "Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis." New Phytologist 219(1): 122-134.

102.  Graus, D., et al. (2022). "Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling." New Phytologist n/a(n/a).

103.  Guo, M., et al. (2022). "A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato." New Phytologist n/a(n/a).

104.  Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).

105.  Johansson, O., et al. (2011). "Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses." New Phytologist 191(3): 795-805.

106.  Koziolek, C., et al. (2003). "Transient knockout of photosynthesis mediated by electrical signals." New Phytologist 161: 715-722.

107.  Lehr, N.-A., et al. (2008). "Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce." New Phytologist 177(4): 965-976.

108.  Lehr, N. A., et al. (2007). "Suppression of plant defence response by a mycorrhiza helper bacterium." New Phytologist 174(4): 892-903.

109.  Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).

110.  Liao, Y., et al. (2015). "Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense againsttobacco mosaic virusin tomato." New Phytologist 205(3): 1296-1307.

111.  Liu, D., et al. (2024). "COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice." New Phytologist n/a(n/a).

112.  Liu, G., et al. (2020). "GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and chlorophyll synthesis in fruit." New Phytologist n/a(n/a).

113.  Lyu, J. I., et al. (2018). "Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis." New Phytologist 0(0).

114.  Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt-tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist 236(4): 1409-1421.

115.  Müller, H. M., et al. (2017). "The Desert plant Phoenix dactylifera close stomata via nitrate-regulated SLAC1 anion channel." New Phytologist.

116.  Pieruschka, R., et al. (2008). "Photosynthesis can be enhanced by lateral CO2 diffusion inside leaves over distances of several millimeters." New Phytologist 178(2): 335-347.

117.  Pieruschka, R., et al. (2006). "Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves." New Phytologist 169: 779-788.

118.  Scharfenstein, H. J., et al. (2024). "Pushing the limits: expanding the temperature tolerance of a coral photosymbiont through differing selection regimes." New Phytologist 243(6): 2130-2145.

119.  Schenstnyi, K., et al. (2022). "The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads." New Phytol n/a(n/a).

120.  Schmitz, N., et al. (2012). "Light-dependent maintenance of hydraulic function in mangrove branches: do xylary chloroplasts play a role in embolism repair?" New Phytologist 195(1): 40-46.

121.  Schroeder, R. Y., et al. (2018). "The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress." New Phytologist 217(1): 233-244.

122.  Song, J., et al. (2023). "SlMPK1- and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato." New Phytologist n/a(n/a).

123.  Song, X., et al. (2023). "Regulation of photosynthetic and hemolytic activity of Phaeocystis globosa under different light spectra." New Phytologist n/a(n/a).

124.  Suetsugu, K., et al. (2023). "Aerial roots of the leafless epiphytic orchid Taeniophyllum are specialized for performing crassulacean acid metabolism photosynthesis." New Phytologist n/a(n/a).

125.  Swift, T. A., et al. (2020). "Photosynthesis and crop productivity are enhanced by glucose-functionalized carbon dots." New Phytologist n/a(n/a).

126.  Tattini, M., et al. (2015). "Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers." New Phytologist 207(3): 613-626.

127.  Voll, L. M., et al. (2009). "Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants." New Phytologist 184(3): 607-618.

128.  von Bismarck, T., et al. (2022). "Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis." New Phytologist.

129.  von Bismarck, T., et al. (2023). "Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis." New Phytologist 237(1): 160-176.

130.  Wang, F., et al. (2022). "SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato." New Phytologist 233(5): 2127-2143.

131.  Wenshan, D., et al. (2018). "The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs." New Phytologist 0(0).

132.  Yu, C.-W., et al. (2020). "Increased ratio of galactolipids MGDG:DGDG induces jasmonic acid overproduction and changes chloroplast shape." New Phytologist n/a(n/a).

133.  Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).

134.  Zhao, M., et al. (2019). "Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants." New Phytologist.

135.  Zhao, Q., et al. (2024). "Identification of two key genes involved in flavonoid catabolism and their different roles in apple resistance to biotic stresses." New Phytologist n/a(n/a).

136.  Zhu, L., et al. (2023). "Heat tolerance of a tropical–subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry." New Phytologist n/a(n/a).

137.  Ajjawi, I., et al. (2010). "Large-Scale Reverse Genetics in Arabidopsis: Case Studies from the Chloroplast 2010 Project." Plant Physiology 152: 529-540.

138.  Arsic, M., et al. (2020). "Bioimaging Techniques Reveal Foliar Phosphate Uptake Pathways and Leaf Phosphorus Status." Plant Physiology 183(4): 1472-1483.

139.  Bykowski, M., et al. (2020). "Too rigid to fold: Carotenoid-dependent decrease in thylakoid fluidity hampers the formation of chloroplast grana." Plant Physiology 185(1): 210-227.

140.  Cai, W., et al. (2021). "Pepper NAC-type transcription factor NAC2c Balances the Trade-off Between Growth and Defense Responses." Plant Physiology 186.

141.  Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.

142.  Chen, Q., et al. (2023). "m-type thioredoxin regulates cytochrome b6f complex of photosynthesis." Plant Physiology.

143.  Depuydt, S., et al. (2009). "An Integrated Genomics Approach to Define Niche Establishment by Rhodococcus fascians." Plant Physiology 149: 1366-1386.

144.  Duan, L., et al. (2020). "Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence." Plant Physiology.

145.  Dziubek, D., et al. (2023). "NTRC and thioredoxins m1/m2 underpin the light acclimation of plants on proteome and metabolome levels." Plant Physiology.

146.  Fujii, S., et al. (2014). "Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons." Plant Physiology: pp. 114.250050.

147.  Gawroński, P., et al. (2018). "Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly." Plant Physiology: pp. 01564.02017.

148.  Gawroński, P., et al. (2018). "Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes." Plant Physiology 176(3): 2557-2569.

149.  Geng, L., et al. (2023). "Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid–dependent pathway." Plant Physiology.

150.  Guo, J., et al. (2022). "Tonoplast-localized transporter ZmNRAMP2 confers root-to-shoot translocation of manganese in maize." Plant Physiology.

151.  Hackett, J. B., et al. (2017). "An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit <em>psbF</em> Transcript Editing." Plant Physiology 173(4): 2278.

152.  He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.

153.  Heddad, M., et al. (2006). "Differential expression and localization of early light-induced proteins in Arabidopsis thaliana." Plant Physiology 142(1): 75-87.

154.  H?hner, R., et al. (2021). "Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance." Plant Physiology 186(1): 142-167.

155.  H?hner, R., et al. (2019). "Photosynthesis in Arabidopsis Is Unaffected by the Function of the Vacuolar K(+) Channel TPK3." Plant Physiology 180(3): 1322-1335.

156.  Horst, R. J., et al. (2010). "Ustilago maydis Infection Strongly Alters Organic Nitrogen Allocation in Maize and Stimulates Productivity of Systemic Source Leaves." Plant Physiology 152: 293-308.

157.  Hsieh, W. Y., et al. (2014). "Functional evidence for the critical N-terminal conserved domain and key amino acids of Arabidopsis HDR." Plant Physiology.

158.  Hu, Q., et al. (2024). "REDUCED CHLOROPLAST COVERAGE proteins are required for plastid proliferation and carotenoid accumulation in tomato." Plant Physiology.

159.  Jiang, X., et al. (2020). "Light-induced HY5 Functions as a Systemic Signal to Coordinate the Photoprotective Response to Light Fluctuation." Plant Physiology 184(2): 1181-1193.

160.  Jin, J., et al. (2023). "(Z)-3-hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants." Plant Physiology: kiad346.

161.  Keller, J.-M., et al. (2023). "Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis." Plant Physiology.

162.  Kocal, N., et al. (2008). "Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv. vesicatoria." Plant Physiology 148: 1523-1536.

163.  Kukuczka, B., et al. (2014). "Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation." Plant Physiology 165(4): 1604-1617.

164.  Kunz, H.-H., et al. (2014). "Loss of Cytosolic Phosphoglucose Isomerase (cPGI) affects carbohydrate metabolism in leaves and is essential for fertility of Arabidopsis thaliana." Plant Physiology: pp. 114.241091.

165.  Lange, P. R., et al. (2008). "Functions of Chloroplastic Adenylate Kinases in Arabidopsis." Plant Physiology 146(2): 492-504.

166.  Lautner, S., et al. (2005). "Characteristics of electrical signals in poplar and responses in photosynthesis." Plant Physiology 138: 2200-2209.

167.  Li, X., et al. (2018). "Plastid Translation Elongation Factor Tu is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance." Plant Physiology: pp. 01672.02017.

168.  Li, X., et al. (2020). "Light Signaling-Dependent Regulation of Photosystem II Biogenesis and Functional Maintenance." Plant Physiology: pp.00200.02020.

169.  Lin, R., et al. (2023). "CALMODULIN6 negatively regulates cold tolerance by attenuating ICE1-dependent stress responses in tomato." Plant Physiology.

170.  Lu, Y., et al. (2008). "New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis." Plant Physiology 146(4): 1482-1500.

171.  Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.

172.  Lytovchenko, A., et al. (2011). "Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development." Plant Physiology: in press.

173.  Morelli, L., et al. (2021). "Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants." Plant Physiology.

174.  Oh, G. G. K., et al. (2021). "Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis." Plant Physiology.

175.  Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.

176.  Ozawa, S.-I., et al. (2022). "Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions." Plant Physiology 191(3): 1803-1817.

177.  Prats, K. A. and C. R. Brodersen (2021). "Desiccation and rehydration dynamics in the epiphytic resurrection fern Pleopeltis polypodioides." Plant Physiology.

178.  Rosado-Souza, L., et al. (2019). "Appropriate thiamin pyrophosphate levels are required for acclimation to changes in photoperiod." Plant Physiology: pp. 01346.02018.

179.  Rühle, T., et al. (2014). "The Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the Assembly of the Membranous Part of the Chloroplast ATP Synthase." Plant Physiology 165(1): 207-226.

180.  Schneider, T., et al. (2019). "Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression." Plant Physiology 179(4): 1632-1657.

181.  Skirycz, A., et al. (2010). "Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress." Plant Physiology 152: 226-244.

182.  Takahashi, S., et al. (2010). "The solar action spectrum of photosystem II damage." Plant Physiology 153: 988-993.

183.  Uflewski, M., et al. (2021). "Functional characterization of proton antiport regulation in the thylakoid membrane." Plant Physiology.

184.  V?lkner, C., et al. (2021). "Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+ release." Plant Physiology.

185.  Wang, F., et al. (2015). "Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling." Plant Physiology: pp. 01171.02015.

186.  Wang, H., et al. (2023). "DELAYED GREENING 409 encodes a dual-localized pentatricopeptide repeat protein required for chloroplast and mitochondrial development." Plant Physiology: kiad258.

187.  Wang, J., et al. (2024). "Glucose-G protein signaling plays a crucial role in tomato resilience to high temperature and elevated CO2." Plant Physiology.

188.  Wang, L., et al. (2023). "Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling." Plant Physiology.

189.  Wang, Y., et al. (2024). "LUX ARRHYTHMO links CBF pathway and jasmonic acid metabolism to regulate cold tolerance of tea plants." Plant Physiology.

190.  Wangpraseurt, D., et al. (2019). "Optical Properties of Corals Distort Variable Chlorophyll Fluorescence Measurements." Plant Physiology 179(4): 1608-1619.

191.  Weigand, C., et al. (2023). "Overexpressing Vitamin C Defective 2 reduces fertility and alters Ca2+ signals in Arabidopsis pollen." Plant Physiology 191(4): 2276-2287.

192.  Xu, D., et al. (2019). "Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance." Plant Physiology 180(1): 323-341.

193.  Yarmolinsky, D., et al. (2014). "Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants." Plant Physiology 165(4): 1505-1520.

194.  Yoshida, Y., et al. (2018). "The Arabidopsis phyB-9 Mutant Has a Second-Site Mutation in the <em>VENOSA4</em> Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth." Plant Physiology 178(1): 3-6.

195.  Zhang, S., et al. (2015). "Light Signaling-dependent Regulation of Photoinhibition and Photoprotection in Tomato." Plant Physiology: eru538.

196.  Zhang, Y., et al. (2022). "Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance." Plant Physiology.

197.  Zhuang, Y., et al. (2024). "CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 regulates salt tolerance through CATALASE 2 in Arabidopsis." Plant Physiology.

198.  Atanasov, V., et al. (2023). "Arabidopsis BBX14 is involved in high light acclimation and seedling development." The Plant Journal n/a(n/a).

199.  Ay, N., et al. (2009). "Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana." The Plant Journal 58(2): 333-346.

200.  Busch, A., et al. (2008). "Ferritin is required for rapid remodeling of the photosynthetic apparatus and minimizes photo-oxidative stress in response to iron availability in Chlamydomonas reinhardtii." The Plant Journal 55(2): 201-211.

201.  Cecchin, M., et al. (2021). "LPA2 protein is involved in photosystem II assembly in Chlamydomonas reinhardtii." The Plant Journal(n/a).

202.  Chung, Y.-H., et al. (2023). "Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants." The Plant Journal n/a(n/a).

203.  Dent, R. M., et al. (2015). "Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants." The Plant Journal 82(2): 337-351.

204.  Gao, T., et al. (2023). "Melatonin confers tolerance to nitrogen deficiency through regulating MdHY5 in apple plants." The Plant Journal n/a(n/a).

205.  Garcia-Molina, A., et al. (2021). "Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis." The Plant Journal 106(3): 766-784.

206.  Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).

207.  Hsieh, W. Y., et al. (2017). "The Arabidopsis thiamin deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway." The Plant Journal.

208.  Jungkunz, I., et al. (2011). "AtHsp70-15 deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV." The Plant Journal 66(6): 983-995.

209.  Khan, M., et al. (2024). "The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus." The Plant Journal n/a(n/a).

210.  Khan, M., et al. (2021). "ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS." Plant Journal n/a(n/a).

211.  Kinoshita, H., et al. (2011). "The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism." The Plant Journal 65(1): 15-26.

212.  Li, Q., et al. (2016). "Functional conservation and divergence of GmCHLI genes in polyploid soybean." The Plant Journal: n/a-n/a.

213.  Li, Y., et al. (2023). "Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress." The Plant Journal n/a(n/a).

214.  Lin, Y.-C., et al. (2016). "Arabidopsis PHOSPHATIDYLGLYCEROPHOSPHATE PHOSPHATASE1 (PGPP1) Involved in Phosphatidylglycerol Biosynthesis and Photosynthetic Function." The Plant Journal: n/a-n/a.

215.  Liu, L., et al. (2024). "Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress." The Plant Journal n/a(n/a).

216.  Liu, T., et al. (2022). "Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato." The Plant Journal n/a(n/a).

217.  Marino, G., et al. (2019). "Relationship of GUN1 to FUG1 in chloroplast protein homeostasis." Plant Journal 0(0).

218.  Osnato, M., et al. (2020). "The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo-protection in Arabidopsis." Plant Journal n/a(n/a).

219.  Pl?tner, B., et al. (2017). "Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana." The Plant Journal.

220.  Raab, S., et al. (2009). "Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis." The Plant Journal 59(1): 39-51.

221.  Rog, I., et al. (2021). "Low light-regulated intramolecular disulfide fine-tunes Arabidopsis PTOX role." The Plant Journal n/a(n/a).

222.  Scherer, V., et al. (2024). "Uracil phosphoribosyltransferase is required to establish a functional cytochrome b6f complex." The Plant Journal n/a(n/a).

223.  Wei, L., et al. (2016). "RNAi-based targeted gene-knockdown in the model oleaginous microalgae Nannochloropsis oceanica." The Plant Journal: n/a-n/a.

224.  Wijerathna-Yapa, A., et al. (2021). "Autophagy mutants show delayed chloroplast development during de-etiolation in carbon limiting conditions." The Plant Journal n/a(n/a).

225.  Yang, J., et al. (2023). "MdHB7-like positively modulates apple salt tolerance by promoting autophagic activity and Na+ efflux." The Plant Journal n/a(n/a).

226.  Yin, X.-r., et al. (2016). "Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening." The Plant Journal: n/a-n/a.

227.  Yu, Y., et al. (2021). "Arabidopsis WRKY71 regulates ethylenemediated leaf senescence via directly activating EIN2, ORE1 and ACS2 genes." The Plant Journal.

228.  Yufei, D., et al. (2022). "The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato." The Plant Journal n/a(n/a).

229.  Gabilly, S. T., et al. (2019). "Regulation of photoprotection gene expression in Chlamydomonas by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS." Proceedings of the National Academy of Sciences 116(35): 17556-17562.

230.  García-Cerdán, J. G., et al. (2020). "Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast development and affects carotenoid accumulation in &lt;em&gt;Chlamydomonas&lt;/em&gt." Proceedings of the National Academy of Sciences: 201916948.

231.  Kunz, H.-H., et al. (2014). "Plastidial transporters KEA1,-2, and-3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis." Proceedings of the National Academy of Sciences 111(20): 7480-7485.

232.  Lee, T.-Y., et al. (2024). "Chlorophyll to zeaxanthin energy transfer in nonphotochemical quenching: An exciton annihilation-free transient absorption study." Proceedings of the National Academy of Sciences 121(42): e2411620121.

233.  Lenzen, B., et al. (2025). "The chloroplast RNA-binding protein CP29A supports rbcL expression during cold acclimation." Proceedings of the National Academy of Sciences 122(5): e2403969122.

234.  Leuenberger, M., et al. (2017). "Dissecting and modeling zeaxanthin-and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana." Proceedings of the National Academy of Sciences: 201704502.

235.  Liu, J. and R. L. Last (2017). "A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments." Proceedings of the National Academy of Sciences: 201712206.

236.  Fang, H., et al. (2024). "Light Stress Elicits Soilborne Disease Suppression Mediated by Root-secreted Flavonoids in Panax notoginseng." Horticulture research: uhae213.

237.  Hu, Z., et al. (2022). "Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO2 and temperature in tomato." Horticulture research 10(1).

238.  Jia, X.-m., et al. (2019). "Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline–alkali stress." Horticulture research 6(1): 91.

239.  Jin, J., et al. (2021). "Amplification of early drought responses caused by volatile cues emitted from neighboring plants." Horticulture research 8(1): 243.

240.  Liu, Y., et al. (2022). "The BBX gene CmBBX22 negatively regulates drought stress tolerance in chrysanthemum." Horticulture research.

241.  Sun, S., et al. (2021). "The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta)." Horticulture research 8(1): 97.

242.  Tan, X.-l., et al. (2018). "Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes." Horticulture research 5.

243.  Wang, H., et al. (2022). "Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]." Horticulture research.

244.  Yan, J., et al. (2023). "Light quality regulates plant biomass and fruit quality through photoreceptors-dependent HY5-LHC/CYCB module in tomato." Horticulture research.


收 藏
下一篇:已經(jīng)沒有了