四通道動態LED陣(zhen)列(lie)近(jin)紅外光譜儀
DUAL-KLAS-NIR
同步(bu)測量PSII活性(葉綠素熒光)和PSI活性(P700)
PC(質(zhi)體藍(lan)素(su))Fd(鐵氧(yang)還蛋白)的氧(yang)化(hua)還(huan)原(yuan)變化(hua)
2016年2月Photosynthesis Research雜志發表了Schreiber博士團隊的研究文章Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer,隆重介紹了DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀。之后2016年4月,2017年3月Schreiber博士團隊再次發表文章,進一步闡述DUAL-KLAS-NIR的實際應用。
作為PSI的(de)(de)(de)(de)電(dian)子供體和電(dian)子受體,PC(質體藍素)和Fd(鐵氧(yang)還(huan)蛋白)對PSI的(de)(de)(de)(de)氧(yang)化還(huan)原起著至關重要(yao)的(de)(de)(de)(de)調(diao)控作用。但一(yi)直缺乏科學(xue)便(bian)捷的(de)(de)(de)(de)手段對其運轉狀(zhuang)(zhuang)態(tai)進(jin)行(xing)檢測(ce)。集成以DUALl-PAM-100為標志(zhi)的(de)(de)(de)(de)第二代(dai)PAM的(de)(de)(de)(de)基本功能,采用先進(jin)的(de)(de)(de)(de)去卷積技(ji)(ji)術(shu)(shu)(一(yi)種根據(ju)來(lai)源不同(tong)對信號進(jin)行(xing)分離的(de)(de)(de)(de)技(ji)(ji)術(shu)(shu)),WALZ公司推出了可以測(ce)量PC和Fd氧(yang)化還(huan)原狀(zhuang)(zhuang)態(tai)的(de)(de)(de)(de)新一(yi)代(dai)PAM熒光儀—DUAL-KLAS-NIR四通道(dao)動(dong)態(tai)LED陣(zhen)列近紅外(wai)光譜儀。
DUAL-KLAS-NIR不但集成了Dual-PAM-100的基本功能,可以同時測量PSP和PSI,而且能夠測量4組不同波段(780-820nm,820-870nm,840-965nm,870-965nm)的信號,實現對P700(PSI反應中心)、PC和Fd的氧化還原狀態分別測量。另外,它還可以測量由540nm和460nm光化光激發的葉綠素熒光。利用DUAL-KLAS-NIR四通道動態LED陣列近紅外光譜儀,可以準同步地測量各種不同的信號,不(bu)僅在(zai)馳豫動力下,還可持續地(di)在(zai)自然穩態下同(tong)時獲取(qu)各組分的信息(xi)。
突出特點
? 可測量活體葉片(pian)或懸(xuan)浮液,對P700、PC和Fd分別進行(xing)連續的實(shi)時(shi)的去卷積分析。
? 同時測量(liang)分別由540nm(整個(ge)葉片)和(he)460nm(表層細(xi)胞層)波(bo)段激(ji)發的兩種(zhong)葉綠(lv)素熒光。
? 通過集(ji)成發光(guang)(guang)(guang)二極管技術,獨創高度緊湊的固態照(zhao)明系(xi)統,提供635nm,460nm的光(guang)(guang)(guang)化光(guang)(guang)(guang)和(he)740nm波段(duan)遠紅光(guang)(guang)(guang),以(yi)及635nm單周轉(zhuan)和(he)多周轉(zhuan)飽和(he)閃光(guang)(guang)(guang)。
? 擁有和DUAL-PAM-100相似的光學部件幾何結構,可與3010-DUAL兼容,結合GFS-3000光合儀,在可控條件(光照,溫度,濕度,CO2濃度)下,同步測量氣體交換和電子傳遞相關的氧化還原。
? 測(ce)量光頻率范圍廣(1 - 400 kHz),允許連續評估Fo,可以在(zai)高時間分辨率下記錄(lu)快速動(dong)態瞬變(如多相熒光上升動(dong)力學或脈沖弛豫動(dong)力學)。
主(zhu)要功能
? 測定(ding)質體藍素(su)(PC),PS I反(fan)應中心(P700)和鐵(tie)氧(yang)還蛋白(Fd)的氧(yang)化還原變化。
? 通過應(ying)用創新的分析方法獲得PC,P700和Fd光譜特征(zheng)。在線監測P700,PC和Fd的氧化還(huan)原(yuan)變化,并確(que)定PC / P700和Fd / P700的比值。
? 可以通(tong)過綠(lv)(lv)色或藍(lan)色PAM測量(liang)光(guang)(guang)來激發(fa)熒(ying)光(guang)(guang)。綠(lv)(lv)光(guang)(guang)比藍(lan)光(guang)(guang)更深入到(dao)葉子中。因此(ci),綠(lv)(lv)色激發(fa)的熒(ying)光(guang)(guang)包括(kuo)來自(zi)更深葉層的信息,因此(ci)非常適合與整個(ge)葉子的NIR吸收測量(liang)進行對比分析。
? 專業數(shu)據(ju)記錄軟(ruan)件,入門特別簡單。可(ke)使用DUAL-KLAS-NIR軟(ruan)件的自動測(ce)量(liang)程序實驗,也可(ke)以編輯腳本(Script)或者保存手動測(ce)量(liang)程序(Trigger),輕松(song)執行復雜的測(ce)量(liang)協議。可(ke)自定義測(ce)量(liang)動作用于特殊誘導過(guo)程動力學(xue)曲線(xian)數(shu)據(ju)獲(huo)取(qu)和分析。
? 兼具慢速動力學曲(qu)線(飽和(he)脈沖(chong)(chong)分析、誘導曲(qu)線和(he)光響應(ying)曲(qu)線)和(he)快速動力學曲(qu)線(飽和(he)脈沖(chong)(chong)動力學曲(qu)線、高達30μs分辨率的馳豫動力學曲(qu)線)。
DUAL-KLAS-NIR軟(ruan)件近紅外測量光設(she)置 | 同步測量Fluo, P700, PC, Fd慢速誘(you)導動力(li)學曲線 |
應(ying)用(yong)領域
光合(he)(he)作(zuo)用電子傳遞過(guo)程各復(fu)合(he)(he)體(ti)(ti)的(de)氧化還原狀態深入剖析,類囊體(ti)(ti)膜(mo)蛋白組分功能研究。
可(ke)廣泛應用于光合合成(cheng)生物(wu)學研究相關的植物(wu)學,植物(wu)生理學,分子生物(wu)學,農學,林學的領域。
應用案例
DUAL-KLAS-NIR為光合(he)作(zuo)用開辟了一個全新的研究領域,實時顯示P700,PC和Fd在活體(ti)(ti)材料中(zhong)的氧化還原狀態,在線解(jie)卷積氧化還原信(xin)號。完美(mei)實現PS I及其供體(ti)(ti)側和受體(ti)(ti)側氧化還原動力(li)學(xue)的同(tong)步測量(liang),從而(er)了解(jie)它們圍(wei)繞(rao)光系統(tong)I的復(fu)雜相互作(zuo)用,另外還可以(yi)探(tan)究PS I周圍(wei)的循(xun)環電子(zi)傳遞(di)的信(xin)息。
在DUAL-KLAS-NIR出現之前,測量光系統I的有效量子產量,P700信號總是會摻雜Fd的貢獻和PC的變量。上圖中圖C顯示了不同光強梯度下甘藍型油菜葉片PSI的有效PSI量子產量Y(I),PSII的有效量子產量Y(II)和經PSI熒光修正后的PSII的有效量子產率Y(II)corr。經過修正后,Y(II)corr和Y(I)在低光強下相似(小于500μmol m-2 s-1)。然而,當光強大于500μmol m-2 s-1時,Y(I)明顯高于Y(II),Y(I)/Y(II)最高可達1.45.
光(guang)系(xi)統I的(de)有效天(tian)線尺寸測(ce)量。植物樣(yang)品從在黑暗條件轉移(yi)到光(guang)下時,在PSI附近,首先PC被(bei)(bei)氧(yang)(yang)化(hua),開始積累,之(zhi)后才是P700被(bei)(bei)氧(yang)(yang)化(hua)。單純的(de)PC信號變化(hua)的(de)初始斜率可以用作PS I的(de)有效天(tian)線尺寸的(de)度(du)量。
右圖是放大后的PC(紅色(se))和P700(藍色(se))初(chu)始(shi)吸光度變化,顯示了他們初(chu)始(shi)斜(xie)(xie)率的巨大差異。對于(yu)黑暗適應(ying)的葉子,轉到(dao)光下(xia)的短時間內,光系統I受體(ti)側未活化,Fd還原(yuan)的初(chu)始(shi)斜(xie)(xie)率也也說明了這一(yi)點。 |
DUAL-KLAS-NIR軟件(jian)設有一個窗(chuang)口顯示P700和PC氧(yang)化還原(yuan)狀(zhuang)態的相(xiang)對變化。該功能(neng)可以(yi)用來計算PC和P700之間的表觀平衡常數。這對研究P700與其(qi)供(gong)體側的相(xiang)互關系是(shi)非常重(zhong)要的。 |
對暗(an)(an)適應的(de)(de)葉(xie)子(zi)(zi)施加飽(bao)和脈沖(chong),測量Fd氧(yang)化(hua)還(huan)(huan)原動力(li)學。我們不(bu)(bu)難發現,飽(bao)和脈沖(chong)產生(sheng)的(de)(de)電子(zi)(zi)將Fd還(huan)(huan)原,飽(bao)和脈沖(chong)之后(hou)的(de)(de)黑(hei)暗(an)(an)中,Fd被(bei)(bei)緩慢(man)再氧(yang)化(hua)。之后(hou),PSI的(de)(de)受體側(ce)的(de)(de)電子(zi)(zi)流被(bei)(bei)激活(huo)(huo),再氧(yang)化(hua)動力(li)學變得更快。在激活(huo)(huo)PSI的(de)(de)受體側(ce)之后(hou),可以通過監測脈沖(chong)后(hou)Fd再氧(yang)化(hua)的(de)(de)速率來研(yan)究Fd的(de)(de)暗(an)(an)滅(mie)活(huo)(huo)。這(zhe)些動力(li)學變化(hua)可以通過指數擬(ni)合(he)程(cheng)序擬(ni)合(he)。圖A給出了Fd再氧(yang)化(hua)動力(li)學曲線指數擬(ni)合(he)程(cheng)序擬(ni)合(he)的(de)(de)實例,圖B顯示了常(chang)春藤葉(xie)片(pian)不(bu)(bu)同暗(an)(an)適應時間后(hou)的(de)(de)PSI受體側(ce)的(de)(de)暗(an)(an)滅(mie)活(huo)(huo)動力(li)學差(cha)異。
PC,P700和(he)(he)(he)Fd的(de)(de)(de)最大NIR透射(she)率(lv)(lv)變化與(yu)這(zhe)些復合(he)物(wu)的(de)(de)(de)在(zai)樣品中的(de)(de)(de)含(han)量(liang)成比(bi)例,并且PC,P700和(he)(he)(he)Fd的(de)(de)(de)消光系數的(de)(de)(de)比(bi)率(lv)(lv)是恒(heng)定的(de)(de)(de)。這(zhe)可以用于探(tan)究不(bu)同物(wu)種或不(bu)同生(sheng)長條件下(例如陽生(sheng)/陰(yin)生(sheng),脅迫/非脅迫)樣品的(de)(de)(de)PC / P700和(he)(he)(he)Fd / P700比(bi)率(lv)(lv),以及PC和(he)(he)(he)Fd庫的(de)(de)(de)相(xiang)(xiang)對(dui)大小。現(xian)已(yi)觀察(cha)到高PC / P700比(bi)率(lv)(lv)與(yu)高電子傳遞速率(lv)(lv)(ETR)值相(xiang)(xiang)關。上(shang)圖(tu)顯(xian)示,在(zai)常春藤陽生(sheng)和(he)(he)(he)陰(yin)生(sheng)葉片中,相(xiang)(xiang)對(dui)于P700,它們(men)PC和(he)(he)(he)Fd含(han)量(liang)有(you)著顯(xian)著的(de)(de)(de)不(bu)同。
主要測量(liang)參數:
? 葉綠素熒光測量:Fo, Fm, Fm’, F, Fo’, Fv/Fm, Y(II), qP, qL, qN, NPQ, Y(NO), Y(NPQ) , ETR(II)等參數,以及各種熒光動力學(xue)曲線(xian)。
? P700測量:必須能夠(gou)測量Pm, Pm’, Y(I), ETR(I), Y(ND)和Y(NA)等參數,以及各種(zhong)P700動力學(xue)曲線。
? PC測量:PCm, PCm’, PCox, Rel PCox
? Fd測(ce)量:Fdm, Fdm’, Fdred, Rel Fdred, Fd/PC
? 實時顯示數據采(cai)集,可以(yi)連續顯示數據采(cai)集過(guo)程即完整的動力學曲線過(guo)程
? 軟件(jian)程(cheng)序(xu):慢速動(dong)力學曲(qu)(qu)線(xian),快速動(dong)動(dong)力學曲(qu)(qu)線(xian),曲(qu)(qu)線(xian)擬(ni)合
產(chan)地:德國WALZ
代表文獻
數據來源:光合作用(yong)文獻Endnote數據庫
原始數據來(lai)源:Google Scholar
2022
Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments." New Phytol n/a(n/a).
Lazár, D., et al. (2022). "Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light." Journal of Experimental Botany 73(18): 6380–6393.
Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson cycle and carbohydrate metabolism in cyanobacteria." 13.
Khruschev, S. S., et al. (2022). "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications." Biophysical Reviews.
Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.
Appel, J., et al. (2022). "Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.
Lempi?inen, T., et al. (2022). "Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery." Plant Cell Environ.
Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.
Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions." Front Microbiol 13: 896190.
Rodriguez-Heredia, M., et al. (2022). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.
Wang, Y., et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria." eLife 11.
Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on the frequency characteristics of non-photochemical quenching and cyclic electron transport." bioRxiv: 2022.2002.2009.479783.
Schmidtpott, S. M., et al. (2022). "Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana." International Journal of Environmental Research and Public Health 19(9): 5144.
2021
Furutani, R., et al. (2021). "The difficulty of estimating the electron transport rate at photosystem I." Journal of Plant Research.
Rodriguez-Heredia, M., et al. (2021). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.
Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."
Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species." Plants 10(7): 1401.
Castell, C., et al. (2021). "New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.
Hepworth, C., et al. (2021). "Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I." Nature Plants.
//doi.org/10.1038/s41477-020-00828-3
Mattila, H., et al. (2021). "Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves." Trees.
Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives CO2 Assimilation in Maize Leaves." International journal of molecular sciences 22.
//doi.org/10.3390/ijms22094894
Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7): 996.
//www.mdpi.com/2076-3921/10/7/996
Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5 in the absence of PGRL1." Nature communications 12(1): 3941.
//doi.org/10.1038/s41467-021-24107-7
2020
Nikkanen L, Santana Sánchez A, Ermakova M, R?gner M, Cournac L, Allahverdiyeva Y: Functional redundancy and crosstalk between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803.BioRxiv
Shimakawa, G., et al. (2020). "Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer." Photosynthesis Research 144(1): 63-72.
Flannery, S. E., et al. (2021). "Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis." The Plant Journal 105(1): 223-244.
Furutani, R., et al. (2020). "Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I." Plants 9(12): 1761.
//doi.org/10.3390/plants9121761
Kato, H., et al. (2020). "Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae." Plant Physiology: pp.00726.02020.
//doi.org/10.1104/pp.20.00726
Nikkanen, L., et al. (2020). "Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant Journal n/a(n/a).
//doi.org/10.1111/tpj.14812
Sétif, P., et al. (2020). "Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861(10): 148256.
Theune, M. L., et al. (2020). "In-vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148353.
2019
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced toxicity and hypoxia. Plant Cell and Environment 42: 574-590.
Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C: Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants 8: 152.
Nikkanen L, Guinea
Sétif P, Boussac A, Krieger-Liszkay A: Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynthesis Research 142: 307-319.
Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research, in press.
2018
Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M, Rintam?ki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct 2: e00093.
Shimakawa G, Miyake C: Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2: e00073.
Takagi D, Miyake C: PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum 164: 337–348.
Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7: e38194.
2017
Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.
2016
Klughammer C, Schreiber U: Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer.
Photosynthesis Research 128: 195–214.
Schreiber U, Klughammer C: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant and Cell Physiology 57: 1454–1467