国产成人免费AV片在线观看_日本按摩高潮a级中文在线_男女高潮又爽又黄又无遮挡_久久久午夜精品福利内容

葉綠素熒光系統成像儀——PAM-WATCH
日期:2018-12-27 11:21:00

功(gong)能強(qiang)大、操作簡便、文獻眾(zhong)多的葉綠素熒光(guang)成(cheng)像系(xi)統

突變(bian)株(zhu)快速篩選的強大工(gong)具


1.jpg

?  標準藍光版(ban),450 nm,測葉片和真核藻類

?  紅(hong)光版,620 nm,測(ce)藍(lan)藻和真核藻類

2.jpg


主要功能

?  成(cheng)像功能:對(dui)Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等參數(shu)進行(xing)成(cheng)像分析。測(ce)定調節性(xing)(xing)能量耗散Y(NPQ),反(fan)映(ying)植物光保護能力,測(ce)定非調節性(xing)(xing)能量耗散Y(NO),反(fan)映(ying)植物光損傷(shang)程(cheng)度。

?  程(cheng)序測(ce)量功能:可(ke)程(cheng)序測(ce)量熒光誘導曲線(xian)、快(kuai)速光曲線(xian)和暗(an)弛(chi)豫,也可(ke)手動(dong)測(ce)量;在測(ce)量過(guo)程(cheng)中能自動(dong)分(fen)析所(suo)有(you)熒光參數的變化趨勢

?  AOI功能(neng):可在測(ce)量前(qian)或測(ce)量后任意選擇(ze)感興趣的(de)(de)(de)區域(AOI),程序(xu)將自動對選擇(ze)的(de)(de)(de)AOI的(de)(de)(de)數據(ju)(ju)進(jin)行變化趨(qu)勢分(fen)析,并(bing)在報告文(wen)件(jian)(jian)中顯(xian)示相關AOI的(de)(de)(de)數據(ju)(ju)。所有報告文(wen)件(jian)(jian)中顯(xian)示的(de)(de)(de)數據(ju)(ju)都可導(dao)出(chu)到EXCEL文(wen)件(jian)(jian)中。

?  成(cheng)像異質性分(fen)析功(gong)能:對(dui)任(ren)意參數任(ren)意時間的成(cheng)像,可在圖(tu)像上任(ren)意選取兩點(dian),軟件(jian)自動(dong)對(dui)兩點(dian)間的數據(ju)進行(xing)橫向異質性分(fen)析,并可導出到EXCEL文(wen)件(jian)中(zhong)。

?  成像(xiang)數據范圍(wei)分析(xi)功能:對任意(yi)(yi)參數任意(yi)(yi)時間的成像(xiang),可分析(xi)任意(yi)(yi)兩(liang)個熒光數值之(zhi)間有多少(shao)個像(xiang)素(su)點,多少(shao)面積(cm2)。

?  突變株篩選功能:可跟據成像結果快速篩選光合、產氫/油、抗逆(抗鹽、抗旱、抗病等)等突變株

?  微(wei)藻毒理研究功能:可同時測量(liang)96個微(wei)藻樣品(對照和處(chu)(chu)理組(zu)(zu))的光(guang)合(he)(he)活性,軟件自動給出處(chu)(chu)理組(zu)(zu)樣品相(xiang)對于對照組(zu)(zu)的光(guang)合(he)(he)抑制百(bai)分(fen)比(bi)。

?  吸光(guang)(guang)(guang)系(xi)(xi)數測(ce)量功(gong)能:快速測(ce)量葉片的吸光(guang)(guang)(guang)系(xi)(xi)數。吸光(guang)(guang)(guang)系(xi)(xi)數測(ce)量光(guang)(guang)(guang)源: 16個紅(hong)光(guang)(guang)(guang)(650 nm)和16個近紅(hong)外(780 nm)LED,用于測(ce)量植物葉片或藻類樣品PAR吸光(guang)(guang)(guang)系(xi)(xi)數。

?  監(jian)(jian)(jian)測功能:可(ke)實時(shi)監(jian)(jian)(jian)控箱內(nei)環境狀態、機器狀態監(jian)(jian)(jian)控區(qu)顯示(shi)目前程(cheng)序及(ji)環境狀態

?  環境(jing)仿真(zhen)功能(neng):可程(cheng)序(xu)(xu)化多(duo)組程(cheng)序(xu)(xu)功能(neng) (可多(duo)至6組),可個(ge)別(bie)設(she)定執行天數,可設(she)備單日環境(jing)參(can)數(間隔可至分鐘),程(cheng)序(xu)(xu)化環境(jing)參(can)數

?  項目管理功能:預(yu)約存多(duo)次測量的(de)植物影(ying)像及參數(shu),延(yan)時(shi)(縮時(shi))攝影(ying)功能

?  數(shu)據分析功能:可(ke)導(dao)(dao)出(chu)照片文件,可(ke)導(dao)(dao)出(chu)葉綠(lv)素熒光(guang)參(can)數(shu)Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等(deng)


系統設計

?  可(ke)單(dan)獨(du)作為葉綠(lv)素(su)熒光(guang)儀使用,方便帶到野外(wai)田(tian)間測(ce)量(liang)(liang)和(he)(he)(he)成(cheng)像;也可(ke)配置箱(xiang)(xiang)體式結構,容量(liang)(liang)300L,能同時滿(man)足(zu)植(zhi)物(wu)培養和(he)(he)(he)葉綠(lv)素(su)熒光(guang)成(cheng)像的功能。箱(xiang)(xiang)體內(nei)(nei)設有栽(zai)培區(qu),可(ke)分2層(ceng)(ceng)、3層(ceng)(ceng)、4層(ceng)(ceng)等(deng),調節高度進行培養和(he)(he)(he)測(ce)量(liang)(liang)。箱(xiang)(xiang)體內(nei)(nei)有特殊消(xiao)光(guang)圖層(ceng)(ceng),避免反(fan)光(guang)造(zao)成(cheng)的測(ce)量(liang)(liang)干擾。

?  系統配置觸摸(mo)式(shi)高清顯示(shi)屏(24寸(cun)),方便操作,支(zhi)持1670萬色彩和(he)FHD高清畫質。

?  系(xi)統處理器:I7處理器,16G緩存,512固態硬盤SSD,滿足快速數(shu)據處理和存儲要求。

?  供(gong)電(dian):室內使(shi)用220V,50Hz交流電(dian),熒光(guang)儀單獨使(shi)用時,內置可充電(dian)鋰電(dian)池供(gong)電(dian),滿(man)足4小(xiao)時的野外(wai)測量


箱體環境控制(光照、溫度等)

?  溫(wen)度環(huan)控條件(jian):15-40°C ±5°C(關燈)

?  光照(zhao)系(xi)統:采用(yong)四合(he)一LED光盤,白(bai)光5000k ±500k、紅光660nm±10nm、藍450nm±10nm、紅外(wai)光730nm±10nm,光盤面積29×40cm,四種光源(yuan)可(ke)獨立自(zi)主控制(zhi),光質強度(du)可(ke)達PPFD ≧700μmols-1m-2@15cm,光照(zhao)時間控制(zhi)可(ke)程序化設(she)(she)定,設(she)(she)定時間可(ke)至1min,可(ke)仿真日出至日落光照(zhao)變化。

?  控制(zhi)系統(tong):PID微電腦控制(zhi),可設定上(shang)晝夜循環程序

?  可(ke)選配(pei)二氧化碳和濕(shi)度(du)控制單元(yuan)


成像技術參數

Maxi探頭

?  熒(ying)光(guang)測(ce)(ce)量光(guang)源(yuan): 44個(ge)藍色LED,450 nm,測(ce)(ce)量光(guang)強度(du)0.5 μmol m-2 s-1PAR,最(zui)大光(guang)化光(guang)強度(du)1900 μmol m-2 s-1PAR,飽和脈(mo)沖強度(du)4000 μmol m-2 s-1PAR

?  吸(xi)光(guang)系數測量光(guang)源(yuan):16個(ge)(ge)紅(hong)光(guang)(660 nm)和(he)16個(ge)(ge)近(jin)紅(hong)外(780 nm)LED,用于測量樣品(pin)PAR吸(xi)光(guang)系數。

?  成(cheng)像面(mian)積:工作距(ju)離(li)18.5cm,成(cheng)像面(mian)積 10×13 cm;工作距(ju)離(li)22.5cm,成(cheng)像面(mian)積11×15cm。

?  光(guang)強異(yi)質(zhi)性(xing):測量區域光(guang)強異(yi)質(zhi)性(xing)小于±7%。

?  測量參數(shu):Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等(deng)。


應用領域

?  光合作用研(yan)究:可以(yi)在(zai)完(wan)全相同的條件下同時對大量樣(yang)品(pin)進行成(cheng)像

?  植物病理學(xue):病斑部位(wei)(包括肉眼不可(ke)見時)成像(xiang)以及(ji)病斑擴散的(de)時空動力學(xue)

?  植物脅(xie)(xie)迫生 理(li)學:肉(rou)眼不可見脅(xie)(xie)迫損傷的早(zao)期檢(jian)測

?  遺傳育種:出苗(miao)后大規模快速篩選高光合/抗(kang)(kang)旱/抗(kang)(kang)熱/抗(kang)(kang)凍/抗(kang)(kang)病等植株

?  突(tu)變(bian)(bian)株篩選:快(kuai)速篩選模式植物(wu)的光合突(tu)變(bian)(bian)株、抗逆突(tu)變(bian)(bian)株、產(chan)氫微藻突(tu)變(bian)(bian)株等(deng)

?  微(wei)藻(zao)毒理學:不同毒物濃度多個(ge)重復的(de)樣品一次測(ce)完,軟件自(zi)動(dong)計算抑制比率(lv)

?  分子生物學:宏觀水平上檢測樣品的綠色(se)熒光蛋白(GFP)熒光

?  其它多種擴展研(yan)究


成像參數

 Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, Abs, NIR和Red等

 

突變株的快速篩選

MAXI-IMAGING-PAM特別適合(he)對幼(you)苗、愈傷(shang)組織、微藻等(deng)進(jin)行突(tu)(tu)變(bian)(bian)株(zhu)的快速篩選,適合(he)于與(yu)光合(he)突(tu)(tu)變(bian)(bian)株(zhu)、抗逆(ni)(抗旱(han)、抗鹽、抗病等(deng))突(tu)(tu)變(bian)(bian)株(zhu)、產油/氫突(tu)(tu)變(bian)(bian)株(zhu)等(deng)的快速篩選。

 

國(guo)外利用MAXI-IMAGING-PAM篩選突變株的典型(xing)(xing)客戶如(ru)(ru)拜耳、BASF、孟山都(dou)、先正達(da)等(deng)大(da)(da)型(xing)(xing)跨國(guo)農業巨頭,以及各(ge)大(da)(da)農業育種、植(zhi)物分子(zi)生物學(xue)等(deng)科研單位,例如(ru)(ru)澳大(da)(da)利亞植(zhi)物功能基因組中心(阿德(de)雷德(de)大(da)(da)學(xue))、德(de)國(guo)尤(you)里(li)希表(biao)型(xing)(xing)植(zhi)物表(biao)型(xing)(xing)研究中心(Julich Plant Phenotyping Centre)等(deng)等(deng)。

 

國(guo)內約一(yi)半的MAXI-IMAGING-PAM客戶在進行突變株快(kuai)速篩選(xuan)工(gong)作,主(zhu)要分(fen)布于中國(guo)科學(xue)院、中國(guo)農(nong)科院和各(ge)大(da)高校。


3.jpg

突(tu)變株篩選(xuan)實例一:國內某客戶篩選(xuan)的擬(ni)南(nan)芥突(tu)變株

4.jpg

突(tu)變(bian)株(zhu)篩選(xuan)實例二:產(chan)油突(tu)變(bian)株(zhu)的(de)篩選(xuan)。Ajjawi et al, 2010, Plant Physiol., 152: 529-540.

5.jpg

突(tu)變株(zhu)篩選(xuan)(xuan)實例三:光合突(tu)變株(zhu)的篩選(xuan)(xuan)。Armbruster et al., 2010, Plant Cell, 22: 3439-3460.


調制葉綠素熒光成像實例

葉片成像異質性

1)葡萄葉片

6.jpg

2)荷花葉片

8.jpg

水果的成像

1)草莓的成像

7.jpg

2)獼猴桃的成像

9.jpg

突變株篩選

10.jpg

植物病理研究

11.jpg


熒光成像與CO2氣體交換的同步測量

12.jpg

(GFS-3000/IM-MAXI):MAXI-探頭與(yu)GFS-3000聯用,在10 cm x 13 cm的(de)面積上同步測量氣體交換與(yu)熒光成像(xiang)。


產地:德國WALZ

 

代表文獻

數據來源:光合(he)作(zuo)用文獻Endnote數據庫

原始數據來源:Google Scholar

1.      Corral, M. G., et al. (2018). "A herbicide structure‐activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana." Pest management science.

2.      Ohnishi, A., et al. (2018). "Improved photosynthesis in Arabidopsis roots by activation of GATA transcription factors." Photosynthetica: 1-12.

3.      Paolacci, S., et al. (2018). "The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus." Aquatic Botany.

4.      Phinney, N., et al. (2018). "Rapid resurrection of chlorolichens in humid air: specific thallus mass drives rehydration and reactivation kinetics." Environmental and Experimental Botany.

5.     ; Antonoglou, O., et al. (2018). "Nanobrass CuZn nanoparticles as foliar spray non phytotoxic fungicides." ACS applied materials & interfaces.

6.      Borlongan, I. A., et al. (2018). "Photosynthetic activity of two life history stages of Costaria costata (Laminariales, Phaeophyceae) in response to PAR and temperature gradient." Phycologia 57(2): 159-168.

7.      Chen, Y.-E., et al. (2018). "Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence." Chemosphere 194: 220-228.

8.      Gawroński, P., et al. (2018). "Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly." Plant Physiology: pp. 01564.02017.

9.      Keilhofer, N., et al. (2018). "Streptomyces AcH 505 triggers production of a salicylic acid analogue in the fungal pathogen Heterobasidion abietinum that enhances infection of Norway spruce seedlings." Antonie van Leeuwenhoek: 1-14.

10.    Lan, X.-Y., et al. (2018). "Resistance mechanisms and their difference between the root and leaf of Microsorum pteropus – A novel potential aquatic cadmium hyperaccumulator." Science of The Total Environment 616-617(Supplement C): 480-490.

11.    Li, S., et al. (2018). "Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage and emission of LOX products across a diverse set of species." Plant, Cell & Environment.

12.    Li, X., et al. (2018). "Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves." Scientia Horticulturae 230: 155-160.

13.    Li, X., et al. (2018). "Melatonin alleviates low PS I‐limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b‐deficient mutant wheat." Journal of pineal research 64(1).

14.    Li, X., et al. (2018). "Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L." Molecules 23(1): 165.

15.    Pan, J., et al. (2018). "Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants." Journal of Integrative Plant Biology.

16.    Pieczywek, P., et al. (2018). "Early detection of fungal infection of stored apple fruit with optical sensors–Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence." Food Control 85: 327-338.

17.    Racheva, R., et al. (2018). "In situ continuous countercurrent cloud point extraction of microalgae cultures." Separation and Purification Technology 190: 268-277.

18.    Schroeder, R. Y., et al. (2018). "The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress." New Phytologist 217(1): 233-244.

19.    Tajti, J., et al. (2018). "Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat." Ecotoxicology and Environmental Safety 148: 546-554.

20.    Wang, Q., et al. (2018). "Molecular cloning and characterization of the glutathione reductase gene from Stipa purpurea." Biochemical and biophysical research communications 495(2): 1851-1857.

21.    Xia, Y., et al. (2018). "Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus." Chemosphere 195: 437-447.

22.    Ahammed, G. J., et al. (2017). "Tomato photorespiratory glycolate oxidase‐derived H2O2 production contributes to basal defense against Pseudomonas syringae." Plant, Cell & Environment.

23.    Allewaert, C. C., et al. (2017). "Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species." Algal Research 21: 191-202.

24.    álvarez-Iglesias, L., et al. (2017). "A simple, fast and accurate screening method to estimate maize (Zea mays L) tolerance to drought at early stages." Maydica 62(2017): M34.

25.   ; Araniti, F., et al. (2017). "Allelopatic Potential of Dittrichia viscosa (L.) W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach." PLoS ONE 12(1): e0170161.

26.    Aucique-Pérez, C. E., et al. (2017). "Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae." Plant Physiology and Biochemistry.

27.    Bellworthy, J. and M. Fine (2017). "Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light." Coral Reefs: 1-12.

28.    Bender-Champ, D., et al. (2017). "Effects of elevated nutrients and CO 2 emission scenarios on three coral reef macroalgae." Harmful Algae 65: 40-51.

29.    Bresson, J., et al. (2017). "A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations." Journal of Experimental Botany.

30.    Brugger, A., et al. (2017). "Impact of compatible and incompatible barley—Blumeria graminis f.sp. hordei interactions on chlorophyll fluorescence parameters." Journal of Plant Diseases and Protection.

31.    Cai, S. Y., et al. (2017). "HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants." Journal of pineal research.

32.    Cantabella, D., et al. (2017). "Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content." Plant Physiology and Biochemistry.

33.    Chakravarti, L. J., et al. (2017). "Rapid thermal adaptation in photosymbionts of reef‐building corals." Global change biology.

34.    Chen, Y.-E., et al. (2017). "Comparison of Photosynthetic Characteristics and Antioxidant Systems in Different Wheat Strains." Journal of Plant Growth Regulation: 1-13.

35.    Cheng, T., et al. (2017). "Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage." Plant Growth Regulation.

36.    Coffey, A., et al. (2017). "The UVB photoreceptor UVR8 mediates accumulation of UV‐absorbing pigments, but not changes in plant morphology, under outdoor conditions." Plant, Cell & Environment.

37.    Corral, M. G., et al. (2017). "Exploiting the evolutionary relationship between malarial parasites and plants to develop new herbicides." Angewandte Chemie.

38.    Csepregi, K., et al. (2017). "Developmental age and UV-B exposure co-determine antioxidant capacity and flavonol accumulation in Arabidopsis leaves." Environmental and Experimental Botany.

39.    Cunning, R., et al. (2017). "Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals." Coral Reefs.

40.    de Lima, D. A., et al. (2017). "Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action." Ecotoxicology and Environmental Safety 141: 242-250.

41.    Di Baccio, D., et al. (2017). ";Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants." Science of The Total Environment.

42.    Domínguez-Martín, M. A., et al. (2017). "Quantitative Proteomics Shows Extensive Remodeling Induced by Nitrogen Limitation in Prochlorococcus marinus SS120." mSystems 2(3): e00008-00017.

43.    Du, G., et al. (2017). "Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos." Chinese Journal of Oceanology and Limnology: 1-12.

44.    Fang, J. K., et al. (2017). "Symbiotic plasticity of Symbiodinium in a common excavating sponge." Marine Biology 164(5): 104.

45.    Fittschen, U., et al. (2017). "A new micro X‐ray fluorescence spectrometer for in vivo elemental analysis in plants." X‐Ray Spectrometry.

46.    Frankenbach, S. and J. Ser?dio (2017). "One pulse, one light curve: Fast characterization of the light response of microphytobenthos biofilms using chlorophyll fluorescence." Limnology and Oceanography: Methods.

47.   ; Gardner, S. G., et al. (2017). "A multi-trait systems approach reveals a response cascade to bleaching in corals." BMC biology 15(1): 117.

48.    Gardner, S. G., et al. (2017). "Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress." Journal of Experimental Biology: jeb. 153049.

49.    Gauslaa, Y., et al. (2017). ";Functional traits prolonging photosynthetically active periods in epiphytic cephalolichens during desiccation." Environmental and Experimental Botany.

50.    Hackett, J. B., et al. (2017). "An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit <em>psbF</em> Transcript Editing." Plant Physiology 173(4): 2278.

51.    Harre, N. T., et al. (2017). "Distribution of Herbicide-Resistant Giant Ragweed (Ambrosia trifida) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes." Weed Science: 1-11.

52.    He, J., et al. (2017). "Photosynthetic acclimation of Grammatophyllum speciosum to growth irradiance under natural conditions in Singapore." Botanical Studies 58(1): 58.

53.    Hsieh, W. Y., et al. (2017). "The Arabidopsis thiamin deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway." The Plant Journal.

54.    Hu, L., et al. (2017). "Appropriate NH4+: NO3? ratio improves low light tolerance of mini Chinese cabbage seedlings." BMC Plant Biology 17(1): 22.

55.    Hu, W., et al. (2017). "Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment." Mycorrhiza: 1-13.

56.    Humanes, A., et al. (2017). "Effects of suspended sediments and nutrient enrichment on juvenile corals." Marine pollution bulletin.

57.    Jiao, Y., et al. (2017). "Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis." Ecological Indicators 78: 131-141.

收 藏