主要功能
本系統是全球檢出限和靈(ling)敏度(du)很高的乙烯監測(ce)系統,主(zhu)要用(yong)于(yu)植(zhi)物(wu)研(yan)究相(xiang)(xiang)關(guan)的乙烯氣體監測(ce),如種子發芽、植(zhi)物(wu)生長發育(yu)、開(kai)花生理、植(zhi)物(wu)器(qi)官衰(shuai)老、基因表達、植(zhi)物(wu)病原體相(xiang)(xiang)互(hu)作(zuo)用(yong)、植(zhi)物(wu)激素間相(xiang)(xiang)互(hu)作(zuo)用(yong)、蔬果收貨后保藏、植(zhi)物(wu)抗逆性(xing)研(yan)究(干(gan)旱、高溫、重金屬)等。
其中乙烯氣體檢測儀 ETD-300 采用先進的激光技術(光聲學原理),即樣品乙烯在光聲腔吸收激光后釋放熱使光聲腔內部產生壓力,隨激光頻率增減形成能被微型麥克風檢測到的壓力差,而乙烯濃度越高壓力差越大,從而據聲波強度差可實時快速測量乙烯氣體(C2H4)絕對濃度;閥門控制箱 VC-6 完全自動化和電腦控制,接一個即可以使單個氣體檢測儀實現6個樣品的自動切換測量,單個乙烯氣體檢測儀可以接一個或多個閥門控制箱;烴分解器 CAT-1 則利用鉑金顆粒催化烴氧化分解為水蒸氣和 CO2,為系統提供無烴干擾的樣品空氣。
測量參(can)數
測量(liang)參數:乙烯濃(nong)度(ppbv)、氣體流速(l/h)、背(bei)景值、模(mo)擬輸入(V)
計算參數:乙烯產(chan)量(nl/h)
連續流(liu)動測(ce)定(左)和積累測(ce)定(右(you))的乙烯監測(ce)數據(ju)圖
應用領(ling)域
用于環境(jing)、醫學(xue)、農業、工業、生(sheng)態、生(sheng)物(wu)等(deng)監測領域。特(te)別適(shi)合植物(wu)生(sheng)理、發育研究的超靈敏乙烯測量(liang)。
主要(yao)技術參數(shu)
參數(shu) | 乙烯氣體檢測儀 ETD-300 | 閥門控(kong)制(zhi)箱 VC-6 | 烴(jing)分解器(qi) CAT-1 | |
測量(liang)范圍(wei) | 0-2 ppm / 0-100 ppm(可調) | / | / | |
檢出限(xian) | 0.3 ppbv | / | / | |
噪(zao)音(2σ) | 0.3 ppbv | / | / | |
精度 | <1% 或 0.3 ppbv | 0.2% FS | / | |
穩定性 | <1% 超過 24 小時 | / | / | |
零(ling)點漂移 | +/-1 ppbv | / | / | |
測量時間(jian) | 7-9 s | / | / | |
響(xiang)應時間 | 30 s (當(dang)流(liu)量(liang)為1 l/h時) | 300 ms | / | |
流量 | 0.25-5 l/h | 0.25-5 l/h | 0-30 l/h | |
校準 | 使用標準混合氣,每年一次 | / | / | |
通道數量 | / | 6(可增(zeng)至 12, 18 等) | / | |
測量(liang)模(mo)式(shi) | / | 連(lian)續測量(liang),積累測量(liang) | / | |
氣體供應壓(ya)力(li) | / | 0.5-5 Bar | / | |
過壓閥 | / | 在 5 Bar 時(shi)打開 | / | |
濾膜類型 | / | 去除粒徑(jing) >7μm 的微(wei)粒 | / | |
最大稀(xi)釋濃度 | / | / | 100 ppm | |
輸出濃(nong)度 | / | / | < 100 pptv | |
壓力(li) | / | / | 0-6 atm | |
活性催(cui)化劑 | / | / | Pt/SiO2 | |
催化溫度 | / | / | 150–250 ℃ | |
預熱時間 | 30 min | / | < 10 min | |
尺寸 | 42x45x14 cm (48.3cm 3U 機(ji)架) | 30x45x10 cm (48.3cm 2U機架) | 33x24x14 cm (48.3 cm 3U 半機架) | |
工作溫度/濕度 | 10-28 ℃ / 0-95 % RH | 5-40 ℃ / 0-95 % RH | 5-40 ℃ / 0-95 % RH | |
電源要求(qiu) | 90-264 VAC,47-63 Hz | 90-264 VAC,47-63 Hz | 90-264 VAC,47-63 Hz | |
功耗 | <150 W | <20 W | 85 W | |
進氣接口 | 接外徑 1/8'' 軟管的快速接頭 | 接外徑 1/8'' 軟管(guan)的(de)快速(su)接頭 | 接外徑 1/8'' 軟管的快速接頭 | |
模擬(ni)輸入 | 0-5 V | / | / | |
數(shu)據(ju)輸(shu)出 | USB,CSV 格(ge)式 | USB,CSV 格式 | / | |
顯(xian)示 | 觸摸屏 | LED 指示(shi)燈(deng) | / |
選購指南:
6通道監測系統組成如下:
乙烯氣體檢測儀ETD-300 + 閥門控制箱VC-6 + 烴分解器CAT-1
注:系統中 3 個儀(yi)器都可以單獨(du)使用
可酌情(qing)選擇單(dan)通道系(xi)統:乙烯(xi)氣體檢(jian)測儀 ETD-300+ 烴分解器 CAT-1。
產地:荷蘭Sensor Sense
應用舉例(li)
1.1 乙烯(xi)測定在(zai)高溫脅迫研究中的應(ying)用(yong)舉例(li)
實驗內容簡(jian)介:以生(sheng)(sheng)長 3 周的擬南芥野生(sheng)(sheng)型(xing) Col-0,突變(bian)體(ti) NahG 和 opr3 植株為材料,研究(jiu)了其高溫(wen)脅(xie)迫(po)下(xia)的乙(yi)烯(xi)釋放(fang)(fang)。其中,野生(sheng)(sheng)型(xing) Col-0 高溫(wen)脅(xie)迫(po)(38℃)下(xia),電導(dao)率(電解質滲透率)、水楊酸(suan)和茉(mo)(mo)莉(li)酸(suan)含(han)量和乙(yi)烯(xi)釋放(fang)(fang)增(zeng)加(jia);突變(bian)體(ti) NahG 和 opr3 高溫(wen)脅(xie)迫(po)(38℃)下(xia)電導(dao)率、茉(mo)(mo)莉(li)酸(suan)和乙(yi)烯(xi)釋放(fang)(fang)也增(zeng)加(jia),但都低于(yu)(yu)野生(sheng)(sheng)型(xing) Col-0,而高溫(wen)脅(xie)迫(po)后恢復階段(duan)(水中 22℃)電導(dao)率明顯(xian)高于(yu)(yu) Col-0。研究(jiu)結(jie)果表明:高溫(wen)脅(xie)迫(po)下(xia),乙(yi)烯(xi)迅速產(chan)生(sheng)(sheng),其生(sheng)(sheng)產(chan)受到茉(mo)(mo)莉(li)酸(suan)和水楊酸(suan)的調(diao)控。總的來說,茉(mo)(mo)莉(li)酸(suan)與水楊酸(suan)協同(tong)調(diao)節植物對高溫(wen)脅(xie)迫(po)的耐受,而乙(yi)烯(xi)主要加(jia)快細胞死亡;突變(bian)體(ti) NahG 和 opr3 比野生(sheng)(sheng)型(xing) Col-0 的耐熱性差(cha),細胞死亡多。
圖1 高(gao)溫(wen)處理(li)下擬南芥植(zhi)株(zhu)的水(shui)楊酸(a)、電(dian)導率(b、c)和乙烯釋放(d、e)
WT:擬南芥野生型;突變株opr3 ;突變株NahG以及培養基agar
Clarke, S.M., et al., Jasmonates act with salicyli c acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 2009. 182(1): p. 175-187.
1.2 乙烯測(ce)定在營養缺(que)乏(fa)(Mg)脅迫(po)研(yan)究中的應用舉例
實驗內容簡介:以生長5周的(de)(de)(de)水培(pei)擬南芥(jie) Col-0 植(zhi)(zhi)株為(wei)材料,研(yan)究(jiu)了(le)其缺(que)鎂(mei)脅(xie)迫下的(de)(de)(de)乙(yi)烯釋放(fang)。缺(que)鎂(mei)處(chu)理后乙(yi)烯生物合成酶(mei)(mei)基因(例(li)如 At5g43450、At1g06620 和At2g25450)的(de)(de)(de)表(biao)達水平明顯上升,樣品乙(yi)烯釋放(fang)是(shi)對(dui)照組(zu)的(de)(de)(de)兩(liang)倍多(duo),葉片中(zhong)抗壞血酸 ASC 和谷胱甘肽 GSH 的(de)(de)(de)氧(yang)化(hua)態(tai)比例(li)增加。研(yan)究(jiu)結果表(biao)明:植(zhi)(zhi)物應答缺(que)鎂(mei)脅(xie)迫存在一些獨(du)特的(de)(de)(de)信號(hao)通(tong)路(lu),且與植(zhi)(zhi)物激素有關(guan),而乙(yi)烯在應答缺(que)鎂(mei)過程中(zhong)發揮了(le)關(guan)鍵作用;缺(que)鎂(mei)還同步增強了(le)植(zhi)(zhi)物抗氧(yang)化(hua)酶(mei)(mei)活性(xing)。
表 1 鎂元(yuan)素缺(que)乏處理第 8 天擬南芥新成(cheng)熟(shu)葉片和根(gen)系的生理參數
DHA:ASC,氧(yang)化態脫氫抗壞(huai)血(xue)酸:抗壞(huai)血(xue)酸;GSSG : GSH,氧(yang)化型(xing)谷胱(guang)甘肽:谷胱(guang)甘肽;Ctrl,鎂元素(su)充(chong)足(zu)的植株;-Mg,鎂元素(su)缺乏的植株
Hermans, C., et al., Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist, 2010. 187(1): p. 132-144.
1.3 乙烯測(ce)定在病(bing)菌(jun)感染研(yan)究(jiu)中的應(ying)用舉(ju)例
實(shi)驗內容簡介:以(yi)(yi)品種為 Money Maker 和 Daniela 的(de)(de)(de)(de)(de)成(cheng)熟番(fan)(fan)(fan)(fan)茄(qie)(qie)果實(shi)為材料,研究了其(qi)感(gan)染(ran)番(fan)(fan)(fan)(fan)茄(qie)(qie)灰(hui)(hui)霉(mei)(mei)病(bing)菌株 VTF1 的(de)(de)(de)(de)(de)乙烯(xi)釋放(fang)(fang)。灰(hui)(hui)霉(mei)(mei)病(bing)菌可以(yi)(yi)在體外產(chan)生(sheng)乙烯(xi),其(qi)乙烯(xi)釋放(fang)(fang)與其(qi)說(shuo)(shuo)與分(fen)(fen)生(sheng)孢(bao)子萌(meng)發相關,不如說(shuo)(shuo)與菌絲生(sheng)長更相關,且分(fen)(fen)生(sheng)孢(bao)子濃度(du)越(yue)大(da)真(zhen)菌的(de)(de)(de)(de)(de)乙烯(xi)釋放(fang)(fang)越(yue)多(duo)。感(gan)染(ran)灰(hui)(hui)霉(mei)(mei)病(bing)的(de)(de)(de)(de)(de)兩種番(fan)(fan)(fan)(fan)茄(qie)(qie)的(de)(de)(de)(de)(de)乙烯(xi)釋放(fang)(fang)規律與灰(hui)(hui)霉(mei)(mei)病(bing)菌類似;但釋放(fang)(fang)量(liang)是其(qi) 100 倍。結(jie)合(he)受感(gan)染(ran)番(fan)(fan)(fan)(fan)茄(qie)(qie)的(de)(de)(de)(de)(de)細(xi)胞學參數,研究結(jie)果表明(ming):番(fan)(fan)(fan)(fan)茄(qie)(qie)-真(zhen)菌系統的(de)(de)(de)(de)(de)乙烯(xi)釋放(fang)(fang)不是由番(fan)(fan)(fan)(fan)茄(qie)(qie)灰(hui)(hui)霉(mei)(mei)病(bing)菌引起的(de)(de)(de)(de)(de),雖說(shuo)(shuo)與其(qi)內部的(de)(de)(de)(de)(de)真(zhen)菌生(sheng)長速率十分(fen)(fen)同(tong)步(bu)。
圖 2 真菌(160 μl 懸浮液)的乙烯產量(liang)
● 1.5*108 灰霉病菌分生孢子 ml-1 ▲ 2*107 灰霉病菌分生孢子 ml-1 ■ 2*105 灰霉病菌分生孢子 ml-1
圖3 模擬(ni)感染和(he)不同(tong)濃度(du)番茄(qie)灰霉病菌(jun)感染的(de)兩種(zhong)番茄(qie)的(de)乙烯釋放(fang)
A.番(fan)茄品種 Money Maker;B.番(fan)茄品種 Daniela;
○ 模擬番茄灰霉病菌感染 ● 1.5*108 灰霉病菌分生孢子 ml-1 ▲ 2*107 灰霉病菌分生孢子 ml-1 ■ 2*105 灰霉病菌分生孢子 ml-1
Cristescu, S.M., et al., Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes. Applied and Environmental Microbiology, 2002. 68 (11): p. 5342-5350.
參考文獻
原始數據來源:Google Scholar
M. Anastasiadi, et al. (2016). "Tissue biochemical diversity of 20 gooseberry cultivars and the effect of ethylene supplementation on postharvest life." Postharvest Biology and Technology 117: 141-151.
M. M. A. Bisson, et al. (2016). "Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening." Scientific Reports 6: 30634.
I. Bulens, et al. (2014). "Dynamic changes of the ethylene biosynthesis in ‘Jonagold’ apple." Physiologia Plantarum 150(2): 161-173.
N. Busatto, et al. (2016). "Candidate gene expression profiling reveals a time specific activation among different harvesting dates in ‘Golden Delicious’ and ‘Fuji’ apple cultivars." Euphytica 208(2): 401-413.
R. Centeno, et al. (2014). "Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser." Sensors and Actuators B: Chemical 203: 311-319.
J. Chmielewska-Bak, et al. (2014). "Effect of cobalt chloride on soybean seedlings subjected to cadmium stress." Acta Societatis Botanicorum Poloniae 83(3).
S. M. Cristescu, et al. (2015). Research Tools: Ethylene Detection.C.-K. Wen. Dordrecht, Springer Netherlands: 263-286.
T. Dawood, et al. (2016). "A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara." Plant Physiology.
H. De Gernier, et al. (2016). "A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana." Frontiers in Plant Science 7: 70.
E. Gharbi, et al. (2016). "Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress." Physiologia plantarum 158(2): 152-167.
S. W. Hoogstrate, et al. (2014). "Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening." Frontiers in Plant Science 5: 466.
A. Jabbar and A. R. East (2016). "Quantifying the ethylene induced softening and low temperature breakdown of ‘Hayward’ kiwifruit in storage." Postharvest Biology and Technology 113: 87-94.
M. Keshavarzi, et al. (2014). "Ethephon and secondary shoot induction in Gentian (Gentiana spp.) hybrids in vitro." Scientia Horticulturae 179: 170-173.
Martin Sch?fer, et al. (2015). "Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata." The New phytologist 207(3): 645-658.
N. A. Mohd-Radzman, et al. (2016). "Different pathways act downstream of the peptide receptor CRA2 to regulate lateral root and nodule development." Plant Physiology.
D. Nguyen, et al. (2016). "Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara." Plant, Cell & Environment 39(7): 1485-1499.
K. Razzaq, et al. (2015). "Role of 1-MCP in regulating 'Kensington Pride' mango fruit softening and ripening." Plant Growth Regulation: 1-11.
S. Rupavatharam, et al. (2015). "Re-evaluation of harvest timing in ‘Unique’ feijoa using 1-MCP and exogenous ethylene treatments." Postharvest Biology and Technology 99: 152-159.
S. Rupavatharam, et al. (2016). "Effects of preharvest application of aminoethoxyvinylglycine (AVG) on harvest maturity and storage life of ‘Unique’ feijoa." New Zealand Journal of Crop and Horticultural Science 44(2): 121-135.
R. Santhanam, et al. (2014). "Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages." PLoS ONE 9(4): e94710.
K. Schellingen, et al. (2014). "Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression." BMC Plant Biology 14(1): 1-14.
A. Sivakumaran, et al. (2016). "ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H(2)O(2) Generation and Increase Host Susceptibility." Frontiers in Plant Science 7: 709.
R. Valluru, et al. (2016). "Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat." Frontiers in Plant Science 7: 461.
B. Van de Poel, et al. (2016). "Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses." Plant Physiology 172(1): 533-545.
D. Vromman, et al. (2016). "Salinity influences arsenic resistance in the xerohalophyte Atriplex atacamensis Phil." Environmental and Experimental Botany 126: 32-43.
R. L. Wilson, et al. (2014). "Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana." Frontiers in Plant Science 5: Article 433(431-413).
R. L. Wilson, et al. (2014). "The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress." Plant Physiology 165(1532-2548 (Electronic)): 1353–1366.
A. Xu, et al. (2014). "ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis." BMC Plant Biology 14: 48-48.
Z. S. Zahoor Hussain (2015). "Involvement of ethylene in causation of creasing in sweet orange [Citrus sinensis (L.) Osbeck] fruit." Australian Journal of Crop Science 9(1): 1-8.