蜂巢矩陣(zhen)葉綠素熒光成像系(xi)統(tong)
HEXAGON-IMAGING-PAM
葉綠素熒光(guang)成(cheng)像系統的“六邊形戰士(shi)”
精度高,面積大,功能全,應用廣(guang),文獻(xian)多,數據可視(shi)化!
HEXAGON-IMAGING-PAM是德國WALZ公司新推出的大型蜂巢矩陣葉綠素熒光成像系統。它憑借高精度的脈沖振幅調制(PAM)技術,可以對20×24cm的區域進行成像。分辨率高達1.2 MP(1000 x 1200 px, 2x2 binning技術,實際是2000×2400),像素尺寸3.45 x 3.45 μm。
超高分辨率的(de)基礎是成像(xiang)區域光場的(de)均(jun)勻性,在設計過程中,光源(yuan)陣列中LED的位置是(shi)經過(guo)精心布局(ju)的,以保證測量(liang)區域內無陰影,所有成像(xiang)區域內的樣品均勻(yun)照(zhao)光,樣品間的差異(yi)可以盡收眼(yan)底(di)。大功(gong)率(lv)LED面板的冷(leng)卻效果(guo)非常好,可以大(da)限度的延長LED的使用壽(shou)命。
增加(jia)遠紅光(FR)LED 面(mian)板(ban),可用于(yu)測量(liang)所研究(jiu)樣品的Fo'值(zhi)。
HEXAGON-IMAGING-PAM采用蜂巢矩陣式LED面(mian)板拼接技術,單個六邊形蜂巢矩陣單元(yuan)之間(jian)LED的(de)不平橫可以獨立補償,初(chu)衷是為實現樣品區(qu)域(yu)的(de)理想(xiang)照明提供更優的(de)選擇。
盡管成像(xiang)區(qu)域很大,但是它依(yi)然足夠靈活,可以測量各(ge)種類型的樣品,如盆栽植(zhi)物,穴(xue)盤中培(pei)養的植(zhi)物,培(pei)養皿(min)上的植(zhi)物或多孔板(ban)中的藻類懸(xuan)浮液。
滑動門設計(ji),集成(cheng)安全(quan)關閉功能,開門狀態(tai)下,飽和脈沖(chong)的強(qiang)度(du)會被抑(yi)制以(yi)保(bao)護(hu)操作人員(yuan)的眼睛(jing)。
主要功能
l 原位測量:活體植物葉綠素熒(ying)光成像,直觀顯(xian)示樣(yang)品光合作用光能利用差異(yi),可導出彩(cai)色(se)圖像。
l 成像功能(neng):對Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、PS/50=ETR、Inh等(deng)參數進行成(cheng)像分析。測定調節性能量耗散(san)Y(NPQ),反映植(zhi)物光保護能力,測定非(fei)調節性(xing)能量耗散Y(NO),反(fan)映植物(wu)光損傷程度。
l 程(cheng)序測(ce)(ce)(ce)量(liang)功(gong)能(neng):可自動(dong)程(cheng)序測(ce)(ce)(ce)量(liang)熒(ying)光誘導曲線、快速光曲線和暗弛豫,也可手動(dong)測(ce)(ce)(ce)量(liang);在測(ce)(ce)(ce)量(liang)過程(cheng)中(zhong)能(neng)自動(dong)分析所有熒(ying)光參(can)數的變(bian)化趨勢(shi);可以(yi)預編程(cheng)進(jin)行自定義實驗流程(cheng),如模擬(ni)波動(dong)光。
l AOI功能:可在測量前或測量后任意選擇感興趣的區域(AOI),程序(xu)將自動(dong)對(dui)選(xuan)擇的AOI的數據進行變(bian)化趨勢分析,并在報告文件(jian)中顯示相關AOI的數據。所有報(bao)告文件中(zhong)顯示的數據都可導出到EXCEL文件中。
l 成(cheng)像異(yi)質性分析(xi)功能:對任意(yi)參數(shu)任意(yi)時間(jian)的(de)成(cheng)像,可(ke)在圖像上(shang)任意(yi)選取兩點(dian),軟(ruan)件自(zi)動(dong)對兩點(dian)間(jian)的(de)數(shu)據進行橫向(xiang)異(yi)質性分析(xi),并可(ke)導出到EXCEL文件中。
l 成像(xiang)數據(ju)范圍分析功能:對任(ren)意參(can)數任(ren)意時間的成像(xiang),可分析任(ren)意兩個熒光數值之間有多少個像(xiang)素點,多少面積(cm2)。
l 突(tu)變株篩選功能:可跟據(ju)成像結果(guo)快速(su)篩選光合(he)、產氫/油、抗逆(抗鹽、抗旱、抗病等(deng))等(deng)突變株。
l 微藻毒(du)理研究功(gong)能:可(ke)同時測量(liang)4塊96孔板,即384個微藻樣品(對(dui)(dui)照和(he)處理(li)組(zu))的(de)光合活性,軟(ruan)件自動(dong)給出(chu)處理(li)組(zu)樣品相對(dui)(dui)于對(dui)(dui)照組(zu)的(de)光合抑(yi)制(zhi)百分比(bi)。
應用領域(yu)
l 光合作用研究:可以在完(wan)全相同的條件下同時對大量樣品(pin)進行成像
l 植物病(bing)理學:病(bing)斑(ban)部位(包括肉(rou)眼不可見時)成像以及病(bing)斑(ban)擴(kuo)散的時空動力(li)學
l 植物(wu)脅(xie)迫(po)生(sheng)理學:肉眼不(bu)可見(jian)生(sheng)物(wu)/非生(sheng)物(wu)脅迫損(sun)傷的早期檢測
l 遺傳育(yu)種:出苗(miao)后大規(gui)模快速(su)篩選高(gao)光(guang)合/抗旱/抗熱/抗凍/抗(kang)病(bing)等植(zhi)株
l 突(tu)變(bian)株(zhu)篩選:快(kuai)速篩選模式植物(wu)的光合突(tu)變(bian)株(zhu)、抗(kang)逆(ni)突(tu)變(bian)株(zhu)、產氫微藻突(tu)變(bian)株(zhu)等
l 微藻(zao)毒理學(xue):不同毒物(wu)濃(nong)度(du)多(duo)個(ge)重復的樣品一(yi)次測(ce)完,軟件自動計算(suan)抑制比率
l 其它多種擴展研究
成像參(can)數(shu)
Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), PS/50=ETR,Inh.等
產地:德國WALZ
參考文獻
數據來源:光合作用文(wen)獻Endnote數據庫(ku),原始數據來源:Google Scholar。
注:HEXAGON-IMAGING-PAM為新(xin)產(chan)品,暫無文獻發表,研究成果可參考M-IMAGING-PAM發表(biao)文(wen)章。
Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.
Sandoval-Ibá?ez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.
Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.
Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.
Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.
Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.
Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).
Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).
Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).
Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist n/a(n/a).
Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).
Ashok, A., et al. (2022). "Food-chain length determines the level of phenanthrene bioaccumulation in corals." Environmental Pollution: 118789.
Cai, W., et al. (2022). "CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper." PLOS Genetics 18(2): e1010023.
Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.
Che, L., et al. (2022). "Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana." Frontiers in Plant Science 13.
Chen, Q., et al. (2022). "Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system." Algal Research 64: 102713.
Gao, S., et al. (2022). "The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing." Environmental and Experimental Botany: 104835.
He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.
Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).
Kareem, H. A., et al. (2022). "Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages." Environmental Pollution 303: 119069.
Li, J., et al. (2022). "Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism." Environmental and Experimental Botany 199: 104868.
Li, T., et al. (2022). "Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta)." Algal Research 66: 102778.
Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.
Liu, K., et al. (2022). "Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI." Environmental and Experimental Botany 200: 104915.
Liu, Y., et al. (2022). "Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum." Environmental and Experimental Botany 201: 104990.
Lu, S., et al. (2022). "VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin." Environmental and Experimental Botany 193: 104678.
Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Lynch, T., et al. (2022). "ABI5 interacting protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Okereke, C. N., et al. (2022). "Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancement of total emissions." Environmental and Experimental Botany: 104777.
Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.
Pan, X., et al. (2022). "Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S." BMC Plant Biology 22(1): 44.
Pandey, K., et al. (2022). "Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought." Environmental and Experimental Botany 194: 104701.
Roach, T., et al. (2022). "Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation." Algal Research 64: 102699.
Rotasperti, L., et al. (2022). "The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops." Environmental and Experimental Botany 196: 104795.
Shindo, A., et al. (2022). "Interactive effects of temperature and irradiance including spectral light quality on the photosynthesis of a brown alga Saccharina japonica (Laminariales) from Hokkaido, Japan." Algal Research 66: 102777.
Sohail, H., et al. (2022). "Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress." Environmental and Experimental Botany: 104995.
Song, W., et al. (2022). "Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum." BMC Plant Biology 22(1): 252.
Szádeczky-Kardoss, I., et al. (2022). "Elongation factor TFIIS is essential for heat stress adaptation in plants." Nucleic Acids Research.
Trainin, T., et al. (2022). "Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability." Frontiers in Plant Science 13.
Xue, S., et al. (2022). "Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis." Environmental and Experimental Botany: 104888.
Yang, L., et al. (2022). "Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum." Environmental and Experimental Botany 194: 104765.
Yang, L., et al. (2022). "Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress." Frontiers in Plant Science 13.
Zhang, J., et al. (2022). "Early evaluation of adjuvant effects on topramezone efficacy under different temperature conditions using chlorophyll fluorescence tests." Frontiers in Plant Science 13.
Zhou, X., et al. (2022). "Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings." BMC Plant Biology 22(1): 30.
Zhu, S., et al. (2022). "Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis." BMC Plant Biology 22(1): 114.