● 上海澤泉(quan)科技股份有限公司
● 上(shang)海師(shi)范大學
● 11月(yue)15日(周三)上午(wu)9:00,華南農業大學生科(ke)院221
● 11月(yue)22日(周三)上午10:30,石河子大學農學院
● 11月24日(周五)上午9:00,中國(guo)農業科學(xue)院農業環境與可持續(xu)發(fa)展研究所
線(xian)下線(xian)上同時進行(xing),線(xian)上騰(teng)訊(xun)會議并通過微(wei)信(xin)視頻號直播
1、識(shi)別下方(fang)二維碼,填寫信(xin)息,點擊提交即可(ke)免費參會。
2、澤(ze)泉科技視(shi)(shi)頻(pin)號(hao)將(jiang)全(quan)程直播(bo),歡迎您預(yu)約觀看(識別(bie)下方二(er)維碼即可關注視(shi)(shi)頻(pin)號(hao))。
Gert Schansker 博士
Gert Schansker博(bo)(bo)士(shi)畢業于(yu)荷蘭瓦(wa)赫(he)寧根(gen)大學(xue)(xue),獲得植物(wu)生理(li)學(xue)(xue)和(he)(he)生物(wu)物(wu)理(li)學(xue)(xue)博(bo)(bo)士(shi)學(xue)(xue)位(wei)。主(zhu)要(yao)研(yan)究(jiu)方向(xiang)為光(guang)(guang)(guang)(guang)合機構的(de)(de)(de)(de)(de)(de)光(guang)(guang)(guang)(guang)脅迫(po)反應(ying)(ying),提出了(le)光(guang)(guang)(guang)(guang)系統II受體側碳酸氫鹽的(de)(de)(de)(de)(de)(de)不可逆損(sun)失是光(guang)(guang)(guang)(guang)系統II活性(xing)降低的(de)(de)(de)(de)(de)(de)主(zhu)要(yao)發生機制。他(ta)在(zai)(zai)(zai)研(yan)究(jiu)中(zhong)應(ying)(ying)用(yong)(yong)的(de)(de)(de)(de)(de)(de)主(zhu)要(yao)非侵(qin)入(ru)性(xing)技(ji)術(shu)之一(yi)(yi)(yi)是葉(xie)綠(lv)(lv)素(su)(su)(su)a熒(ying)(ying)光(guang)(guang)(guang)(guang)與(yu)(yu)光(guang)(guang)(guang)(guang)聲信(xin)號的(de)(de)(de)(de)(de)(de)同步測量技(ji)術(shu)。之后(hou)(hou)(hou),在(zai)(zai)(zai)歐盟(meng)的(de)(de)(de)(de)(de)(de)資助下(xia),前往希臘雅典(dian)Demokritos研(yan)究(jiu)所從事博(bo)(bo)士(shi)后(hou)(hou)(hou)研(yan)究(jiu),使用(yong)(yong)EPR技(ji)術(shu)研(yan)究(jiu)一(yi)(yi)(yi)氧化氮(NO)與(yu)(yu)光(guang)(guang)(guang)(guang)系統II錳簇(cu)S態(tai)(tai)的(de)(de)(de)(de)(de)(de)相互作用(yong)(yong)。他(ta)利用(yong)(yong)一(yi)(yi)(yi)系列單周轉飽(bao)和(he)(he)閃光(guang)(guang)(guang)(guang)及(ji)葉(xie)綠(lv)(lv)素(su)(su)(su)熒(ying)(ying)光(guang)(guang)(guang)(guang)Fo信(xin)號與(yu)(yu)S態(tai)(tai)相關(guan)(guan)(guan)的(de)(de)(de)(de)(de)(de)周期-4振幅研(yan)究(jiu)了(le)S態(tai)(tai)與(yu)(yu)S態(tai)(tai)衰變(bian)對NO的(de)(de)(de)(de)(de)(de)響應(ying)(ying),闡明了(le)實驗中(zhong)觀(guan)測到的(de)(de)(de)(de)(de)(de)NO誘導(dao)的(de)(de)(de)(de)(de)(de)多線態(tai)(tai)EPR信(xin)號可能就是S-2態(tai)(tai)的(de)(de)(de)(de)(de)(de)表征。他(ta)后(hou)(hou)(hou)來(lai)在(zai)(zai)(zai)瑞士(shi)日(ri)內瓦(wa)Reto Strasser博(bo)(bo)士(shi)的(de)(de)(de)(de)(de)(de)實驗室(shi)工作,研(yan)究(jiu)了(le)光(guang)(guang)(guang)(guang)暗(an)轉換(huan)過程中(zhong)820 nm吸收信(xin)號與(yu)(yu)葉(xie)綠(lv)(lv)素(su)(su)(su)a熒(ying)(ying)光(guang)(guang)(guang)(guang)動力學(xue)(xue)之間的(de)(de)(de)(de)(de)(de)關(guan)(guan)(guan)系,系統研(yan)究(jiu)了(le)多種(zhong)植物(wu)在(zai)(zai)(zai)各種(zhong)脅迫(po)條件下(xia)的(de)(de)(de)(de)(de)(de)快速葉(xie)綠(lv)(lv)素(su)(su)(su)熒(ying)(ying)光(guang)(guang)(guang)(guang)誘導(dao)動力學(xue)(xue)曲線(O-I1-I2-P或(huo)O-J-I-P瞬變(bian)),為此類測量提供了(le)幾乎完整的(de)(de)(de)(de)(de)(de)描述。在(zai)(zai)(zai)匈牙(ya)利結束(shu)了(le)光(guang)(guang)(guang)(guang)適應(ying)(ying)和(he)(he)一(yi)(yi)(yi)種(zhong)蝦青(qing)素(su)(su)(su)過量導(dao)致煙草突變(bian)的(de)(de)(de)(de)(de)(de)研(yan)究(jiu)之后(hou)(hou)(hou),自2018年開始,Gert Schansker博(bo)(bo)士(shi)作為德(de)國WALZ公司的(de)(de)(de)(de)(de)(de)應(ying)(ying)用(yong)(yong)科學(xue)(xue)家,負責(ze)Dual-KLAS-NIR和(he)(he)Multi-Color-PAM相關(guan)(guan)(guan)理(li)論(lun)和(he)(he)應(ying)(ying)用(yong)(yong)的(de)(de)(de)(de)(de)(de)研(yan)究(jiu)工作。
1. Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.
2. Schansker, G., et al. (2022). "Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics." Frontiers in Plant Science, 13.
3. TóTH, S. Z., et al. (2020). "Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009." Photosynthetica 58: 560-572.
4. Schansker G, Tóth S Z, Holzwarth A R, et al. Chlorophyll a fluorescence: beyond the limits of the Q A model[J]. Photosynthesis research, 2014, 120(1-2): 43-58.
5. Schansker G, Tóth S Z, Kovács L, et al. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(9): 1032-1043.
6. Schansker G, Yuan Y, Strasser R J. Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison[M]//Photosynthesis. Energy from the Sun. Springer, Dordrecht, 2008: 945-949.
7. Schansker G, Tóth S Z, Strasser R J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757(7): 787-797.
8. Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2005, 1706(3): 250-261.
9. Schansker G, Strasser R J. Quantification of non-Q B-reducing centers in leaves using a far-red pre-illumination[J]. Photosynthesis research, 2005, 84(1-3): 145-151.
10. Schansker G, Srivastava A, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves[J]. Functional Plant Biology, 2003, 30(7): 785-796.
11. Schansker G, Goussias C, Petrouleas V, et al. Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S-2 state[J]. Biochemistry, 2002, 41(9): 3057-3064.
12. Schansker G, Van Rensen J J S. Performance of active photosystem II centers in photoinhibited pea leaves[J]. Photosynthesis Research, 1999, 62(2): 175-184.