主要功能
可測熒光誘導曲線并進行(xing)淬滅(mie)分析
可測光(guang)響(xiang)應(ying)曲(qu)線和快速光(guang)曲(qu)線(RLC)
全部(bu)采(cai)用(yong) LED 光(guang)源,全新觸摸屏(ping)設計
新(xin)(xin)增濕度測量(liang)功能,新(xin)(xin)增遠(yuan)紅光(guang)源
儀器(qi)更加(jia)便攜,適合野外測量
可通過(guo)微光纖與(yu)光合儀(如 GFS-3000)聯用
采用(yong)5號(hao)電(dian)池(chi)供(gong)電(dian),備用(yong)電(dian)池(chi)易(yi)獲得,適合(he)長期野外(wai)使(shi)用(yong)
測(ce)量參數
Fo, Fm, F, Fm', Fo’, Fv/Fm, Y(II) 即(ji) ΔF/Fm', qP, qL, qN, NPQ, Y(NPQ), Y(NO), rETR, PAR、葉溫和相對濕度等。
應用(yong)領域
研(yan)究光(guang)合作用機理、各(ge)種(zhong)環境因子(光(guang)、溫、營養等(deng)(deng))對植(zhi)物生理生態的(de)(de)影響、植(zhi)物抗逆性(干(gan)旱、冷、熱、UV、病毒、污染等(deng)(deng))、植(zhi)物的(de)(de)長期生態學變化等(deng)(deng)。
在植(zhi)物(wu)生(sheng)(sheng)理學(xue)(xue)(xue)、植(zhi)物(wu)生(sheng)(sheng)態學(xue)(xue)(xue)、植(zhi)物(wu)病(bing)理學(xue)(xue)(xue)、農(nong)學(xue)(xue)(xue)、林學(xue)(xue)(xue)、園藝學(xue)(xue)(xue)、水生(sheng)(sheng)生(sheng)(sheng)物(wu)學(xue)(xue)(xue)、環境科學(xue)(xue)(xue)等(deng)領(ling)域有著廣(guang)泛應用。
主要技術(shu)參數
測量光:藍光 LED(470 nm)或紅光 LED(655nm),光強 0.05 μmol m-2 s-1。
光化光:藍光 LED(470 nm)或紅光 LED(655nm),最大連續光強 3000 μmol m-2 s-1。
飽和脈沖:藍光 LED(470 nm)或紅光 LED(655nm),最大閃光強度 6000 μmol m-2 s-1。
遠紅光:發射峰值 740 nm。
信號檢(jian)測:PIN-光(guang)電二極管,帶(dai)長通(tong)和短(duan)通(tong)濾光(guang)片,帶(dai)選(xuan)擇性鎖相放大器。
數(shu)據存儲(chu):8M 存儲(chu)卡,可存儲(chu) 27000 組數(shu)據。
葉夾:2035-B 葉夾包含 MINI-PAM/ F 光纖放置口和樣品夾。葉夾上下兩部分打開后可以夾住葉片。夾子上面部分提供了一個直徑為 1 厘米圓形測量面積。光纖尖端與測量區域之間的標準距離為 8 mm。光纖與測量平面呈 60° 角。葉片溫度傳感器安裝在測量區域下方。濕度傳感器安裝在距離測量區域 3cm 的位置。內置芯片保存傳感器的校準數據。飽和脈沖可以通過遙控觸發按鈕被釋放。另外提供一個附加光傳感器輸入接口。PAR 測量范圍 0-7000 μmol m-2 s-1,葉片溫度測量范圍 -20 至 +60℃,濕度測量范圍 0-100%RH。
供(gong)電(dian)(dian):6 節 AA(5 號 1.2 V/2 Ah)可(ke)充(chong)電(dian)(dian)電(dian)(dian)池,充(chong)電(dian)(dian)一次(ci)可(ke)供(gong) 1000 次(ci)飽和脈沖閃光。
選購指南
一、高等植物葉片測量基本款
系統組成:主機,光(guang)纖,光(guang)適應(ying)葉(xie)夾,暗適應(ying)葉(xie)夾,軟件等
注意:高等植物葉片紅光(guang)(guang)版(ban)和(he)藍光(guang)(guang)版(ban)(推(tui)薦)主機可選其(qi)一
高等植物葉片測量基本款 |
二、懸浮樣品測量基本款
系統組成:主機,光纖,懸(xuan)浮樣品室,磁力攪(jiao)拌器,光纖測氧儀(選配),軟件等(deng)
注意:藻類(lei)測量時,建議選擇紅光版主機
懸浮樣品測量基本款 |
初(chu)始(shi)界面 | 基本測量(liang)結果顯示界面 | 詳(xiang)細參數顯示(shi)界面 |
實時熒光顯示界面(mian) | 慢速誘導動力學(xue)曲線界面 | 快速光曲線顯示界面 |
三、其他可選附件
外置 LED 光(guang)源:2054-L。
可以連接到 2035-B 葉夾上提供外置光化光,紅綠藍白 4 色,最大激發波長分別為 630 nm 紅光, 520 nm 綠光, 452 nm 藍光和波長范圍 450nm-680nm 的白光。每種波長的光標準最大光強為 1500μmol m-2 s-1 連接外部供電裝置情況下,整體最大光強可達 6000μmol m-2 s-1 顏(yan)色組(zu)合可以自(zi)由選擇。
90 度角光纖適配器:2030-B90 。
安裝在 2030-B 或 2060-B 上,使光纖與樣品(pin)成 90 度角。
微(wei)型光量子/溫度傳感器:2065-M。
測(ce)量 PAR 和溫度(du),可連接 MINI-PAM 后獨(du)立使用,多與 2060-B 結合使用。
大樣品表面光(guang)纖固(gu)定支(zhi)架:2060-A。
將光(guang)纖固定在較大樣品的表面(非葉片),與 2065-M 結(jie)合使用(yong)。
擬南芥葉(xie)夾:2060-B。
60 度(du)角(jiao)光(guang)適應葉夾(jia),與獨立(li)微型光(guang)量(liang)子(zi)/溫度(du)傳感器(qi) 2060-M 連用進行(xing)測量(liang),特別適于測量(liang)擬南芥(jie)類小葉片。需(xu)配置 2060-M。
微光纖:MINI-PAM/F1。
直徑 2 mm,長 1.5 m,用于(yu)測量小(xiao)樣品。包(bao)括連接到(dao) 2035-B 的適配(pei)器。
應用示例(li)
產地:德國WALZ
參考文獻
數據(ju)(ju)來源:光合作用文(wen)獻(xian) Endnote 數據(ju)(ju)庫(ku),更新至 2021 年(nian) 1 月(yue),文(wen)獻(xian)數量超過 10000 篇
原始數據(ju)來源:Google Scholar
注(zhu):MINI-PAM-II 為 MINI-PAM 新升級(ji)產品,更多文(wen)獻可(ke)參考 MINI-PAM 文(wen)獻目(mu)錄
Gong, X., et al. (2021). "Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China." Agricultural Water Management 243: 106434.
Afzal, M. J., et al. (2020). "Combined application of Bacillus sp. MN-54 and phosphorus improved growth and reduced lead uptake by maize in the lead-contaminated soil." Environmental Science and Pollution Research.
Andrzejczak, O. A., et al. (2020). "The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming. ." Int. J. Mol. Sci(21): 1546.
Casadesús, A., et al. (2020). "Differential accumulation of tocochromanols in photosynthetic and non-photosynthetic tissues of strawberry plants subjected to reiterated water deficit." Plant Physiology and Biochemistry 155: 868-876.
CHEN Li-li, W. H.-y., GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao (2020). "Transcriptome analysis reveals effects of red and blue light-emitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormone of potato (Solanum tuberosum L.) plantlet cultured in vitro." 2020: 0-.
Czarnes, S., et al. (2020). "Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1." 206(5): 505-516.
Hu, L., et al. (2020). "Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity." Environmental Pollution: 115905.
Huang, D., et al. (2020). "Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization." Chemosphere: 129407.
Kaiser, E., et al. (2020). "Photorespiration Enhances Acidification of the Thylakoid Lumen, Reduces the Plastoquinone Pool, and Contributes to the Oxidation of P700 at a Lower Partial Pressure of CO2 in Wheat Leaves." Plants (Basel) 9(3): 319.
Khan, H., et al. (2020). "Effective Control against Broadleaf Weed Species Provided by Biodegradable PBAT/PLA Mulch Film Embedded with the Herbicide 2-Methyl-4-Chlorophenoxyacetic Acid (MCPA)." ACS Sustainable Chemistry & Engineering 8(13): 5360-5370.
Kim, J.-H., et al. (2020). "Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae." Marine pollution bulletin 157: 111324.
Liu, C., et al. (2020). "Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling." Plant Physiology and Biochemistry 151: 233-242.
Martins, J. P. R., et al. (2020). "Morphophysiological responses, bioaccumulation and tolerance of Alternanthera tenella Colla (Amaranthaceae) to excess copper under in vitro conditions." Plant Cell, Tissue and Organ Culture (PCTOC).
O'Brien, M. J., et al. (2020). "Foundation species promote local adaptation and fine-scale distribution of herbaceous plants." n/a(n/a).
O’Connell, E. and J. Savage (2020). "Extended leaf phenology has limited benefits for invasive species growing at northern latitudes." Biological Invasions.
P.S, C., et al. (2020). "Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach." Chemosphere: 128755.
Pérez-Molina, J., et al. (2020). "Chlorophyll fluorescence and biomass partitioning within light and nitrogen deficiency: An example of the use of the R programming language for teaching." UNED Research Journal 12: 2629.
Rasool, G., et al. (2020). "Effect of Buried Straw Layer Coupled with Fertigation on Florescence and Yield Parameters of Chinese Cabbage Under Greenhouse Environment." Journal of soil science and plant nutrition.
R?hlen-Schmittgen, S., et al. (2020). "Boosting leaf contents of rutin and solanesol in bio-waste of Solanum lycopersicum." Plant Physiology and Biochemistry.
Rosa Guadalupe, P.-H., et al. (2020). "Physiological and microclimatic consequences of variation in agricultural management of maize." Botanical Sciences(0).
Setsungnern, A., et al. (2020). "A defect in BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress in Arabidopsis." Plant Science 296: 110470.
Sinclair, M. N., et al. (2020). "Seasonal facilitative and competitive trade-offs between shrub seedlings and coastal grasses." Ecosphere 11(1): e02995.
Song, H., et al. (2020). "Differences in relative air humidity affect responses to soil salinity in freshwater and salt marsh populations of the dominant grass species Phragmites australis." Hydrobiologia.
Wada, S., et al. (2020). "Photorespiration Enhances Acidification of the Thylakoid Lumen, Reduces the Plastoquinone Pool, and Contributes to the Oxidation of P700 at a Lower Partial Pressure of CO2 in Wheat Leaves." Plants(9): 319.
Wang, L., et al. (2020). "Chloride salinity in a chloride-sensitive plant: Focusing on photosynthesis, hormone synthesis and transduction in tobacco." Plant Physiology and Biochemistry.
Wongnoi, S., et al. (2020). "Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage." Agronomy(10): 576.
Ya?ez-Serrano, A. (2020). "Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO2 Assimilation, Respiration, and VOC Emissions." Frontiers in Plant Science 11.
Zhang, Q., et al. (2020). "Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses." BMC Plant Biology 20(1): 315.
Zhang, X., et al. (2020). "Photosynthetic Properties of Miscanthus condensatus at Volcanically Devastated Sites on Miyake-jima Island." Plants(9): 1212.
Zhong, C., et al. (2020). "Ultrastructural evolution, physiological traits, and carbon and nitrogen assimilation–related gene expression are compatible with the developmental transitions of parthenogenesis in Pyropia haitanensis (Bangiales, Rhodophyta)." Journal of Applied Phycology.
Zou, W., et al. (2020). "The Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide." Environmental Science & Technology.
Hatam, Z., et al. (2020). "Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses." South African Journal of Botany 130: 155-164.
Son, K.-H., et al. (2020). "Growth characteristics and phytochemicals of canola (Brassica napus) grown under UV radiation and low root zone temperature in a controlled environment." Horticulture, Environment, and Biotechnology.
Wang, Q.-W., et al. (2020). "Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance." Journal of Ecology n/a(n/a).